본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of mathematics research v.9 no.1, 2017년, pp.136 -   

Fermat's Theorem -- a Geometrical View

Teia, Luis
  • 초록  

    Fermat's Last Theorem questions not only what is a triple, but more importantly, what is an integer in the context of equations of the type $x^n+y^n=z^n$. This paper explores these questions in one, two and three dimensions. It was found that two conditions are required for an integer element to exist in the context of the Pythagoras' theorem in 1D, 2D and 3D. An integer must satisfy the Pythagoras' theorem of the respective dimension -- condition 1. And, it must be completely successfully split into multiple unit scalars -- condition 2. In 1D, the fundamental unit scalar is the line length 1. All integers in 1D satisfy $x+y=z$, and can be decomposed into multiples of the unit line, hence integers exist and can form 1D triples $(x,y,z)$. In 2D, the fundamental unit scalar is the square side 1. Only some groups of integers (called triples) satisfy $x^2+y^2=z^2$, and can be decomposed into multiples of the unit square, forming 2D triples. In 3D, the fundamental unit scalar is the octahedron side 1. The geometry of the 3D Pythagoras' theorem dictates that $x^3+y^3=z^3$ is governed by octahedrons, validating condition 1. However, octahedrons with side length integer cannot be completely divided into unit octahedrons (as tetrahedrons appear), invalidating condition 2. Hence, if integers do not exist in the context of the 3D Pythagoras' theorem, then neither do triples. This confirms Fermat's Last Theorem for three dimensions ($n=3$). The geometrical interdependency between integers in 1D and 2D suggests that all integers of higher dimensions are built, and hence are dependent, on the integers of lower dimensions. This interdependency coupled with the absence of integers in 3D suggests that there are no integers above $n>2$, and therefore there are also no triples that satisfy $x^n+y^n=z^n$ for $n>2$.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • Canadian Center of Science and Education : 저널
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기