본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Applied energy v.212, 2018년, pp.1522 - 1536   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test

Li, Shi (Institute for Combustion Engines, RWTH Aachen University, Forckenbeckstrasse 4, D-52074 Aachen, Germany ) ; Pischinger, Stefan (Institute for Combustion Engines, RWTH Aachen University, Forckenbeckstrasse 4, D-52074 Aachen, Germany ) ; He, Chaoyi (Institute for Combustion Engines, RWTH Aachen University, Forckenbeckstrasse 4, D-52074 Aachen, Germany ) ; Liang, Liliuyuan (Institute for Combustion Engines, RWTH Aachen University, Forckenbeckstrasse 4, D-52074 Aachen, Germany ) ; Stapelbroek, Michael (FEV Europe GmbH, Neuenhofstrasse 181, D-52078 Aachen, Germany ) ;
  • 초록  

    Abstract The actual capacity of a battery is an essential indicator for calculating both the state of health and the remaining electric driving range. Numerous model-based techniques employing adaptive filters have been proposed for the online capacity estimation. However, in these filter-based methods, the impacts of filter configurations and the algorithm effectiveness at various aging stages have not yet been fully investigated. To address this gap and to evaluate the performance of three most popular algorithms, i.e. the extended Kalman filter, the particle filter, and the least-squares-based filter, they are coupled with an SOC estimator in dual frameworks. The characterization and accelerated aging tests have been carried out on a lithium-ion battery. After investigating the possible impacts from the configurations, the tracking accuracy, the robustness against the uncertainty of the initial capacity and the long-term performance of the three algorithms are compared. Furthermore, their computational efforts are extensively assessed regarding complexity, simulation runtime as well as compiled code size utilizing an automotive prototype hardware. The results show that the extended Kalman filter is the least sensitive to model degradation with the lowest computational effort; the particle filter shows the fastest convergence speed but has the highest computational effort; and the least-squares-based filter has an intermediate behavior in both long-term performance and computational effort. Highlights Experiments are performed for model parameterization and algorithm evaluation. Configuration and parameterization for the dual estimators are investigated. Robustness and accuracy of the algorithms at various aging stages are compared. Computational complexity, simulation runtime and program size are analyzed.


  • 주제어

    Lithium-ion battery .   Capacity estimation .   Particle filter .   Extended Kalman filter .   Recursive least square .   Lifetime performance.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기