본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Acta Biomaterialia: structure-property-function relationships in biomaterials v.70, 2018년, pp.98 - 109   SCI SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices

Wang, Zhengmu (Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ) ; Zhang, Hongbin (Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ) ; Chu, Axel J. (Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ) ; Jackson, John (Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ) ; Lin, Karen (The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Jack Bell Research Centre, Vancouver, BC V6H 3Z6, Canada ) ; Lim, Chinten James (BC Children's Hospital Research Institute and Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada ) ; Lange, Dirk (The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Jack Bell Research Centre, Vancouver, BC V6H 3Z6, Canada ) ; Chiao, Mu (Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ) ;
  • 초록  

    Abstract Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. Statement of Significance In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Hydrogel .   Alginate .   Coating .   Biomedical device .   Nested-network.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기