본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Acta Biomaterialia: structure-property-function relationships in biomaterials v.70, 2018년, pp.110 - 119   SCI SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel

Hogrebe, Nathaniel J. (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ; Reinhardt, James W. (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ; Tram, Nguyen K. (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ; Debski, Anna C. (The Ohio State University, Department of Material Science and Engineering, 177 Watts Hall 2041 N. College Rd., Columbus, OH 43210, USA ) ; Agarwal, Gunjan (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ; Reilly, Matthew A. (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ; Gooch, Keith J. (The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall 1080 Carmack Rd., Columbus, OH 43210, USA ) ;
  • 초록  

    Abstract A cell’s insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-R DG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Statement of Significance Physical cues from a cell’s surrounding environment—such as the density of cell binding sites and the stiffness of the surrounding material—are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Self-assembling peptide .   3D cell culture .   Human mesenchymal stem cell differentiation .   Matrix stiffness .   RGD concentration.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기