본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal of heat and mass transfer v.121, 2018년, pp.196 - 206   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Bubble nucleation in superhydrophobic microchannels due to subcritical heating

Cowley, Adam (Corresponding author. ) ; Maynes, Daniel ; Crockett, Julie ; Iverson, Brian D. ;
  • 초록  

    Abstract This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass surface separated by spacers. The microchannel is 60 mm long by 14 mm wide and two channel heights of nominally 183 μm and 366 μm are explored. The superhydrophobic side is in contact with a heated aluminum block and a camera is used to visualize the flow through the glass side. Thermocouples are embedded in the aluminum to record the temperature profile along the length of the channel. Temperatures are maintained below the boiling temperature of the working liquid. The friction factor-Reynolds product ( fRe ) is obtained via pressure drop and volumetric flow-rate measurements. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, superhydrophobic with ribs perpendicular to the flow, superhydrophobic with ribs parallel to the flow, and superhydrophobic with ribs parallel to the flow with several breaker ridges perpendicular to the flow. The surface type/configuration has a significant impact on the mass transport dynamics. For surfaces with closed cell micro-structures, large bubbles eventually form and adversely affect fRe and lead to higher temperatures along the channel. When degassed water is used, no bubble nucleation is observed and the air initially trapped in the superhydrophobic cavities is quickly absorbed by the water. Highlights Superhydrophobic surfaces act as nucleation sites for mass transport. Large bubbles form in heated superhydrophobic microchannels. Hydrodynamic and thermal performance of microchannel are adversely affected by bubbles.


  • 주제어

    Superhydrophobic .   Convection .   Heat transfer .   Mass transfer .   Microchannel .   Nucleation.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기