본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal of heat and mass transfer v.121, 2018년, pp.1281 - 1296   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Investigation of flame radiation sampling and temperature measurement through light field camera

Sun, Jun (School of Energy & Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, PR China ) ; Hossain, Md. Moinul (Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK ) ; Xu, Chuanlong (School of Energy & Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, PR China ) ; Zhang, Biao (School of Energy & Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, PR China ) ;
  • 초록  

    Abstract Different light field cameras (i.e., traditional and focused) can be used for the flame temperature measurement. But it is crucial to investigate which light field camera can provide better reconstruction accuracy for the flame temperature. In this study, numerical simulations were carried out to investigate the reconstruction accuracy of the flame temperature for the different light field cameras. The effects of flame radiation sampling of the light field cameras were described and evaluated. A novel concept of sampling region and sampling angle of the light field camera was proposed to assess the directional accuracy of the sampled rays of each pixel on the photosensor. It has been observed that the traditional light field camera sampled more rays for each pixel, hence the sampled rays of each pixel are approached less accurately from a single direction. The representative sampled ray was defined to obtain the direction of flame radiation. The radiation intensity of each pixel was calculated and indicated that the traditional light field camera sampled less radiation information than the focused light field camera. A non-negative least square (NNLS) algorithm was used to reconstruct the flame temperature. The reconstruction accuracy was also evaluated for the different distances from microlens array (MLA) to the photosensor. The results obtained from the simulations suggested that the focused light field camera performed better in comparison to the traditional light field camera. Experiments were also carried out to reconstruct the temperature distribution of ethylene diffusion flames based on the light field imaging, and to validate the proposed model. Highlights An innovative idea of sampling region and sampling angle of the light field camera is proposed. The effects of flame radiation sampling of the different light field cameras are investigated. The distributions of the sampled rays are also compared. Reconstruction accuracy is investigated for distances from microlens array to photosensor.


  • 주제어

    Focused light field camera .   Traditional light field camera .   Radiation sampling .   3-D reconstruction .   Flame temperature.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기