본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry v.91, 2018년, pp.140 - 148   SCI SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Inherited control of crystal surface reactivity

Fischer, Cornelius (Helmholtz-Zentrum Dresden-Rossendorf, Inst. f. Ressourcenökologie, Abt. Reaktiver Transport, Permoserstr. 15, D-04318, Leipzig, Germany ) ; Kurganskaya, Inna (Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, Bern, 3012, Switzerland ) ; Luttge, Andreas (MARUM & Fachbereich Geowissenschaften, Universität Bremen, D-28359, Bremen, Germany ) ;
  • 초록  

    Abstract Material and environmental sciences have a keen interest in the correct prediction of material release as a result of fluid-solid interaction. For crystalline materials, surface reactivity exerts fundamental control on dissolution reactions; however, it is continuously changing during reactions and governs the dynamics of porosity evolution. Thus, surface area and topography data are required as input parameters in reactive transport models that deal with challenges such as corrosion, CO 2 sequestration, and extraction of thermal energy. Consequently, the analysis of surface reaction kinetics and material release is a key to understanding the evolution of dissolution-driven surface roughness and topography. Kinetic Monte Carlo (KMC) methods simulate such dynamic systems. Here we apply these techniques to study the evolution of reaction rates and surface topography in crystalline materials. The model system consists of domains with alternating reactivity, implemented by low vs. high defect densities. Our results indicate complex and dynamic feedbacks between domains of high versus low defect density, with the latter apparently limiting the overall dissolution rate of the former - a limitation that prevails even after their disappearance. We introduce the concept of “inherited” control, consistent with our observation that maximum dissolution rates in high defect density domains are lower than they would be in the absence of low defect density neighboring domains. The controlling factor is the spatial pattern of surface accessibility of fluids. Thus, the distribution of large etch pits centers is inherited almost independently of spatial contrasts in crystal defect density during ongoing reactions. As a critical consequence, the prediction of both the material flux from the reacting surface and the evolution of topography patterns in crystalline material is constrained by the reaction history. Important applications include the controlled inhibition of reactivity of crystalline materials as well as the quantitative evaluation and prediction of material failure in corrosive environments. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Kinetic Monte Carlo simulation .   Rate spectra .   Crystal dissolution .   Surface reactivity .   Surface topography and roughness patterns.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기