본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Computers in biology and medicine v.95, 2018년, pp.271 - 276   SCI SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Estimating a person's age from walking over a sensor floor

Hoffmann, Raoul (Future-Shape GmbH, Altlaufstraße 34, 85635, Höhenkirchen-Siegertsbrunn, Germany ) ; Lauterbach, Christl (Future-Shape GmbH, Altlaufstraße 34, 85635, Höhenkirchen-Siegertsbrunn, Germany ) ; Conradt, Jörg (Neuroscientific System Theory (NST), Department of Electrical Engineering and Information Technology, Technische Universität München (TUM), Karlstraße 45, 80333 München, Germany ) ; Steinhage, Axel (Future-Shape GmbH, Altlaufstraße 34, 85635, Höhenkirchen-Siegertsbrunn, Germany ) ;
  • 초록  

    Abstract Ageing has an effect on many parameters of the physical condition, and one of them is the way a person walks. This property, the gait pattern, can unintrusively be observed by letting people walk over a sensor floor. The electric capacitance sensors built into the floor deliver information about when and where feet get into close proximity and contact with the floor during the phases of human locomotion. We processed gait patterns recorded this way by extracting a feature vector containing the discretised distribution of occurring geometrical extents of significant sensor readings. This kind of feature vector is an implicit measure encoding the ratio of swing-to stance phase timings in the gait cycle and representing how cleanly the leg swing is performed. We then used the dataset to train a Multi-Layer Perceptron to perform regression with the age of the person as the target value, and the feature vector as input. With this method and a dataset size of 142 persons recorded, we achieved a mean absolute error of approximately 10 years between the true age and the estimated age of the person. Considering the novelty of our approach, this is an acceptable result. The combination of a floor sensor and machine learning methods for interpreting the sensor data seems promising for further research and applications in care and medicine. Highlights A persons age is estimated from gait patterns recorded with a sensor floor. Gait patterns of 142 persons were recorded, with ages ranging from 13 to 82 years. The data is processed by extracting features and training a multi-layer perceptron. Estimation errors are relatively high, but a coarse age estimation is possible.


  • 주제어

    Sensor floor .   Gait analysis .   Age estimation .   Machine learning .   Multi-layer perceptron .   Neural network.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기