본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal of electrical power & energy systems v.99, 2018년, pp.516 - 524   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Constrained Bayesian dual-filtering for state of charge estimation of lithium-ion batteries

Dong, Guangzhong (Corresponding author. ) ; Wei, Jingwen ; Chen, Zonghai ;
  • 초록  

    Abstract The state-of-charge estimation of lithium-ion batteries plays a key role in energy storage systems such as battery monitoring, fault detection, power and energy optimization control. However, it is technically challenging, in particular, for the simultaneous estimation of battery internal impedance and state-of-charge, which are two key state variables affecting battery performance. This paper reveals that the commonly used state-of-charge estimation schemes based on Bayesian filters are fundamentally flawed in taking state constraints into account. Constrained Bayesian dual filtering framework for parameter estimation and state-of-charge estimation are designed in this paper to improve the estimation accuracy and robustness. After a state-of-charge and open-circuit-voltage mapping is accurately identified, a dual-filtering framework is introduced to simultaneously estimate the state-of-charge and model parameters which gives rise to the dynamics. The inequality constraints of state variables in Bayesian dual-filtering framework are also taken into account. The state-of-charge and model parameter estimation results of the constrained dual-filtering are regarded as the mean of constraints. Extensive comparative experiments are conducted to validate that the proposed method is superior over existing methods in providing improved accuracy and robustness. Highlights A Bayesian dual-filtering framework is used to estimate parameters and states. Typical Bayesian filters, like EKF, UKF, and PF are compared and analyzed. A constrained operation is designed to improve the performance of dual estimators. The robustness of new method is validated under dynamic experimental conditions.


  • 주제어

    Constrained state estimation .   Bayesian filtering .   lithium-ion battery model .   System identification.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기