HOME> 논문 > 논문 검색상세

## 논문 상세정보

Information and computation v.261 pt.2, 2018년, pp.355 - 382   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

### Greatest fixed points of probabilistic min/max polynomial equations, and reachability for branching Markov decision processes

Etessami, Kousha    (School of Informatics, University of Edinburgh, United Kingdom   ); Stewart, Alistair    (Department of Computer Science, University of Southern California, United States   ); Yannakakis, Mihalis    (Department of Computer Science, Columbia University, United States  );
• #### 초록

Abstract We give polynomial time algorithms for quantitative (and qualitative) reachability analysis for Branching Markov Decision Processes (BMDPs). Specifically, given a BMDP, and given an initial population, where the objective of the controller is to maximize (or minimize) the probability of eventually reaching a population that contains an object of a desired (or undesired) type, we give algorithms for approximating the supremum (infimum) reachability probability, within desired precision ϵ > 0 , in time polynomial in the encoding size of the BMDP and in log ⁡ ( 1 / ϵ ) . We furthermore give P-time algorithms for computing ϵ -optimal strategies for both maximization and minimization of reachability probabilities. We also give P-time algorithms for all associated qualitative analysis problems, namely: deciding whether the optimal (supremum or infimum) reachability probabilities are 0 or 1. Prior to this paper, approximation of optimal reachability probabilities for BMDPs was not even known to be decidable. Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum (minimum) non -reachability probabilities are given by the greatest fixed point (GFP) solution g ⁎ ∈ [ 0 , 1 ] n of a corresponding monotone max (min) Probabilistic Polynomial System of equations (max/minPPS), x = P ( x ) , which are the Bellman optimality equations for a BMDP with non-reachability objectives. We show how to compute the GFP of max/minPPSs to desired precision in P-time. We also study more general branching simple stochastic games (BSSGs) with (non-)reachability objectives. We show that: (1) the value of these games is captured by the GFP, g ⁎ , of a corresponding max-minPPS, x = P ( x ) ; (2) the quantitative problem of approximating the value is in TFNP; and (3) the qualitative problems associated with the value are all solvable in P-time.

활용도 분석

amChart 영역

amChart 영역

#### 원문보기

• 원문이 없습니다.
##### 유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기