본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Procedia CIRP v.72, 2018년, pp.153 - 158  

A framework to guide the selection and configuration of machine-learning-based data analytics solutions in manufacturing

Villanueva Zacarias, Alejandro Gabriel    (Graduate School of Excellence advanced Manufacturing and Engineering, Nobelstrasse 12, Stuttgart 70569, Germany   ); Reimann, Peter    (Graduate School of Excellence advanced Manufacturing and Engineering, Nobelstrasse 12, Stuttgart 70569, Germany   ); Mitschang, Bernhard    (Graduate School of Excellence advanced Manufacturing and Engineering, Nobelstrasse 12, Stuttgart 70569, Germany  );
  • 초록  

    Abstract Users in manufacturing willing to apply machine-learning-based (ML-based) data analytics face challenges related to data quality or to the selection and configuration of proper ML algorithms. Current approaches are either purely empirical or reliant on technical data. This makes understanding and comparing candidate solutions difficult, and also ignores the way it impacts the real application problem. In this paper, we propose a framework to generate analytics solutions based on a systematic profiling of all aspects involved. With it, users can visually and systematically explore relevant alternatives for their specific scenario, and obtain recommendations in terms of costs, productivity, results quality, or execution time.


  • 주제어

    data analytics .   machine learning .   learning algorithms .   generative design.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기