본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Procedia CIRP v.72, 2018년, pp.1063 - 1068  

Energy Consumption Modelling Using Deep Learning Technique — A Case Study of EAF

Chen, Chong    (Mechanical and Manufacturing Engineering, Cardiff University, Cardiff, CF24 3AA, UK   ); Liu, Ying    (Mechanical and Manufacturing Engineering, Cardiff University, Cardiff, CF24 3AA, UK   ); Kumar, Maneesh    (Cardiff Business School, Cardiff University, Cardiff, CF10 3EU, UK   ); Qin, Jian    (Mechanical and Manufacturing Engineering, Cardiff University, Cardiff, CF24 3AA, UK  );
  • 초록  

    Abstract Energy consumption is a global issue which government is taking measures to reduce. Steel plant can have a better energy management once its energy consumption can be modelled and predicted. The purpose of this study is to establish an energy value prediction model for electric arc furnace (EAF) through a data-driven approach using a large amount of real-world data collected from the melt shop in an established steel plant. The data pre-processing and feature selection are carried out. Several data mining algorithms are used separately to build the prediction model. The result shows the predicting performance of the deep learning model is better than the conventional machine learning models, e.g., linear regression, support vector machine and decision tree.


  • 주제어

    Energy modelling .   Intelligent manufacturing .   Deep learning .   Data mining.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기