논문 상세정보
Signal and noise extraction from analog memory elements for neuromorphic computing
-
초록
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
활용도 분석
-
상세보기
-
원문보기
원문보기
무료다운로드
- Nature Publishing : 저널
유료다운로드
- DOI : http://dx.doi.org/10.1038/s41467-018-04485-1
- ProQuest Medical Library : 저널
유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.
원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.
NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.
- 이 논문과 함께 출판된 논문 + 더보기
-
-
Structural absorption by barbule microstructures of super black bird of paradise feathers
- Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy
- Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper
- Fasoracetam in adolescents with ADHD and glutamatergic gene network variants disrupting mGluR neurotransmitter signaling
- VAMPnets for deep learning of molecular kinetics