논문 상세정보
Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation
-
초록
Reaction pathways of biochemical processes are influenced by the dissipative electrostatic interaction of the reagents with solvent water molecules. The simulation of these interactions requires a parametrization of the permanent and induced dipole moments. However, the underlying molecular polarizability of water and its dependence on ions are partially unknown. Here, we apply intense terahertz pulses to liquid water, whose oscillations match the timescale of orientational relaxation. Using a combination of terahertz pump / optical probe experiments, molecular dynamics simulations, and a Langevin dynamics model, we demonstrate a transient orientation of their dipole moments, not possible by optical excitation. The resulting birefringence reveals that the polarizability of water is lower along its dipole moment than the average value perpendicular to it. This anisotropy, also observed in heavy water and alcohols, increases with the concentration of sodium iodide dissolved in water. Our results enable a more accurate parametrization and a benchmarking of existing and future water models.
활용도 분석
-
상세보기
-
원문보기
원문보기
무료다운로드
- Nature Publishing : 저널
유료다운로드
- DOI : http://dx.doi.org/10.1038/s41467-018-04481-5
- ProQuest Medical Library : 저널
유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.
원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.
NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.
- 이 논문과 함께 출판된 논문 + 더보기
-
-
Structural absorption by barbule microstructures of super black bird of paradise feathers
- Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy
- Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper
- Fasoracetam in adolescents with ADHD and glutamatergic gene network variants disrupting mGluR neurotransmitter signaling
- VAMPnets for deep learning of molecular kinetics