논문 상세정보
Robust parameter design optimization for type‐I right censored data
-
초록
Abstract Robust parameter design (RPD) aims to build product quality in the early design phase of product development by optimizing operating conditions of process parameters. A vast majority of the current RPD studies are based on an uncensored random sample from a process distribution. In reality, censoring schemes are widely implemented in lifetime testing, survival analysis, and reliability studies in which the value of a measurement is only partially known. However, there has been little work on the development of RPD when censored data are under study. To fill in the research gaps given practical needs, this paper proposes response surface–based RPD models that focus on survival times and hazard rate. Primary tools used in this paper include the Kaplan‐Meier estimator, Greenwood's formula, the Cox proportional hazards regression method, and a nonlinear programming method. The experimental modeling and optimization procedures are demonstrated through a numerical example. Various response surface–based RPD optimization models are proposed, and their RPD solutions are compared.
-
주제어
censoring . Kaplan‐Meier estimator . proportional hazards . quality . response surface.
활용도 분석
-
상세보기
-
원문보기
원문보기
유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.
원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.
NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.
- 이 논문과 함께 출판된 논문 + 더보기
-
-
Issue Information
- A linear‐time method for computing the ANOS of Bernoulli and Poisson CUSUM charts
- EWMA chart based on Bayes‐conditional pivotal quantity for Weibull percentiles under complete data and type‐II censoring
- A global scheme for controlling the mean and standard deviation of a process based on the optimal design of gauges
- Robust parameter design optimization for type‐I right censored data