본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Reliability assessment of complex electromechanical systems: A network perspective

Lin, Shuai (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China ) ; Wang, Yanhui (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China ) ; Jia, Limin (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China ) ; Zhang, Hengrun (Department of Computer Science, Center for Secure Information Systems, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA ) ;
  • 초록  

    Abstract The network theory is widely applied to improve the reliability of a complex electromechanical system. In this application, system reliability assessment with network theory has been paid a great deal of attention. Because of instrument malfunctions, staff omissions, imperfect inspection strategies, and complex structures, field failure data are often subject to interval censoring, making the holistic reliability assessment becomes a difficult task. Most traditional methods assume reliability of critical components or partial reliability as system reliability, which may cause a large bias in system reliability estimation. This paper proposes a novel method to evaluate and predict the system reliability of a complex electromechanical system subject to the insufficient fault data problem from a network perspective. First, the system modeling based on network theory is developed to describe the topology of a holistic system. Second, interval‐valued intuitionistic hesitant fuzzy number is proposed in order to solve insufficient data for single component. Then, a new measure—comprehensive reliability—that can reflect the reliability of nodes in combination with functional properties and topological properties, which are formulated by failure data and network model, respectively, is constructed for system reliability assessment. Subsequently, an improved system reliability model based on percolation theory is given in terms of comprehensive reliability of nodes. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for traction system are implemented.


  • 주제어

    comprehensive reliability .   high‐speed train system .   network model .   percolation theory .   reliability assessment.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기