본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Data‐driven identification and control of nonlinear systems using multiple NARMA‐L2 models

Yang, Yue (Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore ) ; Xiang, Cheng (Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore ) ; Gao, Shuhua (Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore ) ; Lee, Tong Heng (Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore ) ;
  • 초록  

    Summary The multiple model approach provides a powerful tool for identification and control of nonlinear systems. Among different multiple model structures, the piecewise affine (PWA) models have drawn most of the attention in the past two decades. However, there are two major issues for the PWA model‐based identification and control: the curse of dimensionality and the computational complexity. To resolve these two issues, we propose a novel multiple model approach in this paper. Different from PWA models in which all dimensions of the regressor space are engaged in the partitioning, the key idea of the proposed multiple model architecture is to partition only the range of the control input u ( k ) at time k (the instant of interest in the control problem) into several intervals and identify a local model that is linear in u ( k ) within each interval. On the basis of Taylor's theorem, a theoretical upper bound for the approximation error of the model structure can also be obtained. With the proposed multiple model architecture, a switching control algorithm is derived to control nonlinear systems on the basis of the weighted one‐step‐ahead predictive control method and constrained optimization techniques. In addition, the upper bound for the tracking error using this switching control strategy is also analyzed rigorously under certain assumptions. Finally, both simulation studies and experimental results demonstrate the effectiveness of the proposed multiple model architecture and switching control algorithm. Copyright ⓒ 2017 John Wiley & Sons, Ltd.


  • 주제어

    data‐driven .   identification and control .   nonlinear systems .   multiple models.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기