논문 상세정보
Biological Spiking Synapse Constructed from Solution Processed Bimetal Core–Shell Nanoparticle Based Composites
-
초록
Abstract Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain‐like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core–shell nanoparticle (NP)‐based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired‐pulse depression, paired‐pulse facilitation, post‐tetanic potentiation, spike‐time‐dependent plasticity, and the transformation from short‐term plasticity to long‐term plasticity are emulated. This work demonstrates that the solution processed bimetal core–shell nanoparticle‐based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.
-
주제어
artificial synapses . bimetal core–shell nanoparticles . neuromorphic computing . resistive switching . solution process.
활용도 분석
-
상세보기
-
원문보기
원문보기
유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.
원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.
NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.
- 이 논문과 함께 출판된 논문 + 더보기
-
-
Dual-Modal NIR-Fluorophore Conjugated Magnetic Nanoparticle for Imaging Amyloid- Species In Vivo
- Biological Spiking Synapse Constructed from Solution Processed Bimetal Core–Shell Nanoparticle Based Composites
- Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation
- Recent Progress in Some Amorphous Materials for Supercapacitors
- Fabricating Ir/C Nanofiber Networks as Free‐Standing Air Cathodes for Rechargeable Li‐CO2 Batteries