본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

The Knowledge engineering review v.33, 2018년, pp. -   

Relational time series forecasting

Rossi, Ryan A.
  • 초록  

    Abstract Networks encode dependencies between entities (people, computers, proteins) and allow us to study phenomena across social, technological, and biological domains. These networks naturally evolve over time by the addition, deletion, and changing of links, nodes, and attributes. Despite the importance of modeling these dynamics, existing work in relational machine learning has ignored relational time series data . Relational time series learning lies at the intersection of traditional time series analysis and statistical relational learning, and bridges the gap between these two fundamentally important problems. This paper formulates the relational time series learning problem, and a general framework and taxonomy for representation discovery tasks of both nodes and links including predicting their existence, label, and weight (importance), as well as systematically constructing features. We also reinterpret the prediction task leading to the proposal of two important relational time series forecasting tasks consisting of (i) relational time series classification (predicts a future class or label of an entity), and (ii) relational time series regression (predicts a future real-valued attribute or weight). Relational time series models are designed to leverage both relational and temporal dependencies to minimize forecasting error for both relational time series classification and regression. Finally, we discuss challenges and open problems that remain to be addressed.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기