본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

International journal for numerical methods in flu...International journal for numerical methods in fluids 3건

  1. [해외논문]   Issue Information   SCI SCIE


    International journal for numerical methods in fluids v.83 no.9 ,pp. 679 - 680 , 2017 , 0271-2091 ,

    초록

    No abstract is available for this article.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   A novel weighting switch function for uniformly high‐order hybrid shock‐capturing schemes   SCI SCIE

    Peng, Jun (State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China) , Shen, Yiqing (State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China)
    International journal for numerical methods in fluids v.83 no.9 ,pp. 681 - 703 , 2017 , 0271-2091 ,

    초록

    Summary Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing hybrid schemes in literature, empirical problem‐dependent parameters are always needed to detect shock waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on the nonlinear weights of the weighted essentially non‐oscillatory (WENO) scheme, a novel weighting switch function is proposed. This function approaches 1 with high‐order accuracy in smooth regions and 0 near discontinuities. Then, with the new weighting switch function, a seventh‐order hybrid compact‐reconstruction WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth‐order WENO scheme, and it has seventh‐order accuracy in smooth regions even at critical points. Numerical tests are presented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also reveal that HCCS has lower dissipation and less computational cost than the seventh‐order WENO scheme. Copyright ⓒ 2016 John Wiley & Sons, Ltd.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Stabilized mixed three‐field formulation for a generalized incompressible Oldroyd‐B model   SCI SCIE

    Kwack, JaeHyuk (Department of Civil and Environmental Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, USA) , Masud, Arif (Department of Civil and Environmental Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, USA) , Rajagopal, K. R. (Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA)
    International journal for numerical methods in fluids v.83 no.9 ,pp. 704 - 734 , 2017 , 0271-2091 ,

    초록

    Summary This paper presents a generalization of the incompressible Oldroyd‐B model based on a thermodynamic framework within which the fluid can be viewed to exist in multiple natural configurations. The response of the fluid is viewed as a combination of an elastic component and a dissipative component. The dissipative component leads to the evolution of the underlying natural configurations, while the response from the natural configuration to the current configuration is considered elastic and therefore non‐dissipative. For an incompressible fluid, it is necessary that both the elastic behavior as well as the dissipative behavior is isochoric. This is achieved by ensuring that the determinant of the stretch tensor associated with the elastic response meets the constraint that its determinant is unity. A new stabilized mixed method is developed for the velocity, pressure and the kinematic tensor fields. Analytical models for fine scale fields are derived via the solution of the fine‐scale equations facilitated by the Variational Multiscale framework that are then variationally embedded in the coarse‐scale variational equations. The resulting method inherits the attributes of the classical SUPG and GLS methods, while a significant new contribution is that the form of the stabilization tensors is explicitly derived. A family of linear and quadratic tetrahedral and hexahedral elements is developed with equal‐order interpolations for the various fields. Numerical tests are presented that validate the incompressibility of the elastic stretch tensor, show optimal L 2 convergence for the conformation tensor field, and present stable response for high Weissenberg number flows. Copyright ⓒ 2016 John Wiley & Sons, Ltd.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지