본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Water resources research 53건

  1. [해외논문]   Issue Information   SCI SCIE


    Water resources research v.52 no.9 ,pp. 6707 - 6709 , 2016 , 0043-1397 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Regionalization of land‐use impacts on streamflow using a network of paired catchments   SCI SCIE

    Ochoa‐ (Imperial College London, Department of Civil and Environmental Engineering and Grantham Institute–Climate Change and the Environment, London, UK ) , Tocachi, Boris F. (Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN), Área de Cuencas Andinas, Lima, Peru) , Buytaert, Wouter , De Biè , vre, Bert
    Water resources research v.52 no.9 ,pp. 6710 - 6729 , 2016 , 0043-1397 ,

    초록

    Abstract Quantifying the impact of land use and cover (LUC) change on catchment hydrological response is essential for land‐use planning and management. Yet hydrologists are often not able to present consistent and reliable evidence to support such decision‐making. The issue tends to be twofold: a scarcity of relevant observations, and the difficulty of regionalizing any existing observations. This study explores the potential of a paired catchment monitoring network to provide statistically robust, regionalized predictions of LUC change impact in an environment of high hydrological variability. We test the importance of LUC variables to explain hydrological responses and to improve regionalized predictions using 24 catchments distributed along the Tropical Andes. For this, we calculate first 50 physical catchment properties, and then select a subset based on correlation analysis. The reduced set is subsequently used to regionalize a selection of hydrological indices using multiple linear regression. Contrary to earlier studies, we find that incorporating LUC variables in the regional model structures increases significantly regression performance and predictive capacity for 66% of the indices. For the runoff ratio, baseflow index, and slope of the flow duration curve, the mean absolute error reduces by 53% and the variance of the residuals by 79%, on average. We attribute the explanatory capacity of LUC in the regional model to the pairwise monitoring setup, which increases the contrast of the land‐use signal in the data set. As such, it may be a useful strategy to optimize data collection to support watershed management practices and improve decision‐making in data‐scarce regions.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information   SCI SCIE

    Salinas, José (Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria ) , Luis (Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria ) , Kiss, Andrea (Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria ) , Viglione, Alberto (Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria) , Viertl, Reinhard , Blö , schl, Gü , nter
    Water resources research v.52 no.9 ,pp. 6730 - 6750 , 2016 , 0043-1397 ,

    초록

    Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non‐fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   A bottom‐up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate   SCI SCIE

    Culley, S. (School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia ) , Noble, S. (School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia ) , Yates, A. (School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia ) , Timbs, M. (School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia ) , Westra, S. (School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia ) , Maier, H. R. (Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy ) , Giuliani, M. (Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy) , Castelletti, A.
    Water resources research v.52 no.9 ,pp. 6751 - 6768 , 2016 , 0043-1397 ,

    초록

    Abstract Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large‐scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom‐up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Joint inversion of hydraulic head and self‐potential data associated with harmonic pumping tests   SCI SCIE

    Soueid Ahmed, A. (Université) , Jardani, A. (de Rouen, M2C, UMR 6143, CNRS, Morphodynamique Continentale et Côtière, Mont Saint Aignan, France ) , Revil, A. (ISTerre, CNRS, UMR 5275, Equipe Géophysique des Volcans, Université) , Dupont, J. P. (Savoie Mont‐Blanc, 73376 cedex, Le Bourget du Lac, France )
    Water resources research v.52 no.9 ,pp. 6769 - 6791 , 2016 , 0043-1397 ,

    초록

    Abstract Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self‐potential data recorded at the ground surface to the head data. The self‐potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3‐D saturated unconfined synthetic aquifer that the self‐potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self‐potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low‐rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self‐potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self‐potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self‐potential investigation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   An analytical thermohydraulic model for discretely fractured geothermal reservoirs   SCI SCIE

    Fox, Don B. (School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA ) , Koch, Donald L. (School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA) , Tester, Jefferson W.
    Water resources research v.52 no.9 ,pp. 6792 - 6817 , 2016 , 0043-1397 ,

    초록

    Abstract In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one‐dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Effects of the hydraulic conductivity microstructure on macrodispersivity   SCI SCIE

    Di Dato, Mariaines (Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA ) , de Barros, Felipe P. J. (Dipartimento di Ingegneria, Roma Tre University, Rome, Italy ) , Fiori, Aldo (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy) , Bellin, Alberto
    Water resources research v.52 no.9 ,pp. 6818 - 6832 , 2016 , 0043-1397 ,

    초록

    Abstract Heterogeneity of the hydraulic properties is one of the main causes of the seemingly random distribution of solute concentration observed in contaminated aquifers, with macrodispersivity providing a global measure of spreading. Earlier studies on transport of solutes in heterogeneous formations, either theoretical or numerical, expressed dispersivity as a function of the geostatistical properties of the hydraulic conductivity K . In most cases, K follows a second‐order statistical characterization, which may not be adequate when heterogeneity is high. In this work, we adopt the Multi‐Indicator Model–Self Consistent Approach (MIMSCA) to compute the longitudinal and transverse macrodispersivity. This methodology enables to model the K field by using geological inclusions of different shapes and orientation (defined here as the microstructure), while replicating the heterogeneous macrostructure obtained by the second‐order statistics. The above scheme attempts to reproduce the effect on macrodispersion of different distribution and orientation of local facies, and for instance it may represent the orientation and spatial features of the layers that are often observed in aquifers. The relevant impact of the microstructure on effective conductivity, longitudinal and transverse macrodispersivities is analyzed and discussed, for both binary and lognormally distributed K fields.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image‐based, multiscale pore network model   SCI SCIE

    Bultreys, Tom (UGCT/Radiation Physics, Department of Physics and Astronomy, Ghent University, Ghent, Belgium ) , Van Hoorebeke, Luc (UGCT/PProGRess, Department of Geology, Ghent University, Ghent, Belgium) , Cnudde, Veerle
    Water resources research v.52 no.9 ,pp. 6833 - 6850 , 2016 , 0043-1397 ,

    초록

    Abstract The two‐phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image‐based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore‐size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water‐and oil‐wet simulations show good results, as do mixed‐wettability scenarios with different pore‐scale wettability distributions. We also show simulations on a network extracted from a micro‐CT scan of Estaillades limestone, which yields good agreement with water‐wet and mixed‐wet experimental results.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Impacts of three‐dimensional nonuniform flow on quantification of groundwater‐surface water interactions using heat as a tracer   SCI SCIE

    Reeves, Jonathan (Department of Geosciences, University of Massachusetts, Amherst, Massachusetts, USA) , Hatch, Christine E.
    Water resources research v.52 no.9 ,pp. 6851 - 6866 , 2016 , 0043-1397 ,

    초록

    Abstract Use of heat‐as‐a‐tracer is a common method to quantify surface water‐groundwater interactions (SW‐GW). However, the method relies on assumptions likely violated in natural systems. Numerical studies have explored violation of fundamental assumptions such as heterogeneous streambed properties, two‐dimensional groundwater flow fields and uncertainty in thermal parameters for the 1‐D heat‐as‐a‐tracer method. Few studies to date have modeled complex, fully three‐dimensional groundwater flows to address the impacts of nonuniform, 3‐D flow vectors on use of heat‐as‐a‐tracer to quantify SW‐GW interactions. COMSOL Multiphysics was used to model scenarios in a fully three‐dimensional flow field in homogeneous, isotropic sand with a sinusoidal temperature upper boundary where vertical flows are deliberately disrupted by large and varied horizontal flows from two directions. Resulting temperature time series from multiple depths were used to estimate vertical Darcy flux and compared with modeled fluxes to assess the performance of the 1‐D thermal methods to quantify multidimensional groundwater flows. In addition, apparent effective thermal diffusivity was calculated from synthetic temperature time series and compared to model input diffusivity. Both increasingly nonuniform and nonvertical groundwater flow fields resulted in increasing errors for both the temperature‐derived flux and temperature‐derived effective thermal diffusivity. For losing (downward) flow geometries, errors in temperature‐derived effective thermal diffusivity were highly correlated with errors in temperature‐derived flux and were used to identify how and when underlying assumptions necessary to use heat‐as‐a‐tracer for quantifying groundwater flows were violated. Specifically, nonuniform flow fields (with flow lines that converge or diverge) produced the largest errors in simulated fluxes.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Conservative transport upscaling based on information of connectivity   SCI SCIE

    Tyukhova, Alina R. (Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland) , Willmann, Matthias
    Water resources research v.52 no.9 ,pp. 6867 - 6880 , 2016 , 0043-1397 ,

    초록

    Abstract Connected structures in highly heterogeneous hydraulic conductivity fields lead to channels and preferential pathways for the main fluid flux and fastest solute particles. Their spatial complement is zones of slow advection, where solutes are delayed, causing tailing of solute breakthrough curves. These delays depend on the inclusion's size and the hydraulic conductivity contrast between inclusion and channel. The interplay between channels and small‐scale low conductivity inclusions leads to anomalous transport at larger scales. We test whether a simple separation of transport processes between channels and inclusions could be used to parameterize an effective transport model accounting for anomalous transport. Effective transport is represented by a multirate mass transfer model (MRMT): fast channel transport is controlled by parameters of the mobile zone, while slow advective delays are controlled by parameters of the mobile‐immobile exchange. We delineate the connected channels and analyze their connectivity followed by characterizing the low conductivity inclusions. We parameterize a MRMT model using connectivity and the statistics of the low permeable inclusions. Finally, we compare the parameterized MRMT with detailed numerical simulations in heterogeneous hydraulic conductivity fields with a clear separation between connected channel network and inclusions. In intermediately connected hydraulic conductivity fields only the cut‐off time of the tails is represented while early and intermediate time behavior is not reproduced. We suggest that an effective model for the latter case should account for additional processes like variability in advective velocity.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지