본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

GLIA 11건

  1. [해외논문]   Erratum  


    GLIA v.65 no.4 ,pp. NA , 2017 , 0894-1491 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Issue Information ‐ Table of Contents   SCI SCIE SCOPUS


    GLIA v.65 no.4 ,pp. 531 - 532 , 2017 , 0894-1491 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Comparative electrophysiology of retinal MUller glial cells—A survey on vertebrate species   SCI SCIE SCOPUS

    Pannicke, Thomas (Paul‐Flechsig‐Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany) , Ivo Chao, T. (Institute of Anatomy and Cell Biology, Medical School Göttingen, Germany) , Reisenhofer, Miriam (Department of Chemistry, University of Zürich, Switzerland) , Francke, Mike (Paul‐Flechsig‐Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany) , Reichenbach, Andreas (Paul‐Flechsig‐Institut für Hirnforschung, Abteilung Pathophysiologie der Neuroglia, Universität Leipzig, Germany)
    GLIA v.65 no.4 ,pp. 533 - 568 , 2017 , 0894-1491 ,

    초록

    MUller cells are the dominant macroglial cells in the retina of all vertebrates. They fulfill a variety of functions important for retinal physiology, among them spatial buffering of K + ions and uptake of glutamate and other neurotransmitters. To this end, MUller cells express inwardly rectifying K + channels and electrogenic glutamate transporters. Moreover, a lot of voltage‐ and ligand‐gated ion channels, aquaporin water channels, and electrogenic transporters are expressed in MUller cells, some of them in a species‐specific manner. For example, voltage‐dependent Na + channels are found exclusively in some but not all mammalian species. Whereas a lot of data exist from amphibians and mammals, the results from other vertebrates are sparse. It is the aim of this review to present a survey on MUller cell electrophysiology covering all classes of vertebrates. The focus is on functional studies, mainly performed using the whole‐cell patch‐clamp technique. However, data about the expression of membrane channels and transporters from immunohistochemistry are also included. Possible functional roles of membrane channels and transporters are discussed. Obviously, electrophysiological properties involved in the main functions of MUller cells developed early in vertebrate evolution. GLIA 2017;65:533–568

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Neuron–astrocyte signaling is preserved in the aging brain   SCI SCIE SCOPUS

    Gó (Instituto Cajal, CSIC, Madrid, 28002, Spain) , mez‐ (Department of Neuroscience, University of Minnesota, Minneapolis, 55455 ) , Gonzalo, Marta (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Martin‐ (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Fernandez, Mario (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Martí (Department of Neuroscience, University of Minnesota, Minneapolis, 55455 ) , nez‐ (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Murillo, Ricardo (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Mederos, Sara (Instituto Cajal, CSIC, Madrid, 28002, Spain) , Herná (College of Medicine, University of Florida, Gainesville, Florida, 32610‐0261) , ndez‐ (Aging and Neurodegeneration Unit, Biomedical Research Institute of Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, 08036, Spain) , Vivanco, Alicia , Jamison, Stephanie , Fernandez, Ana P. , Serrano, Julia , Calero, Pilar , Futch, Hunter S. , Corpas, Rubé , n , Sanfeliu, Coral , Perea, Gertrudis , Araque, Alfonso
    GLIA v.65 no.4 ,pp. 569 - 580 , 2017 , 0894-1491 ,

    초록

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte–neuron signaling is derived from studies with young animals; however, the features of astrocyte–neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte–neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month‐old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter‐dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG‐induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte–neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated‐signaling, which is required for neurotransmitter‐induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte–neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569–580

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   The TAM receptor Tyro3 regulates myelination in the central nervous system   SCI SCIE SCOPUS

    Akkermann, Rainer (Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia) , Aprico, Andrea (The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia) , Perera, Ashwyn A. (The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade (Cnr Genetics Lane), Parkville, Victoria, 3052, Australia) , Bujalka, Helena (Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia) , Cole, Alistair E. (Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia) , Xiao, Junhua (Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia) , Field, Judith (Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010,) , Kilpatrick, Trevor J. , Binder, Michele D.
    GLIA v.65 no.4 ,pp. 581 - 591 , 2017 , 0894-1491 ,

    초록

    Myelin is an essential component of the mammalian nervous system, facilitating rapid conduction of electrical impulses by axons, as well as providing trophic support to neurons. Within the central nervous system, the oligodendrocyte is the specialized neural cell responsible for producing myelin by a process that is thought to be regulated by both activity dependent and independent mechanisms but in incompletely understood ways. We have previously identified that the protein Gas6, a ligand for a family of tyrosine kinase receptors known as the TAM (Tyro3, Axl, and Mertk) receptors, directly increases oligodendrocyte induced myelination in vitro . Gas6 can bind to and activate all three TAM receptors, but the high level of expression of Tyro3 on oligodendrocytes makes this receptor the principal candidate for transducing the pro‐myelinating effect of Gas6. In this study, we establish that in the absence of Tyro3, the pro‐myelinating effect of Gas6 is lost, that developmental myelination is delayed and that the myelin produced is thinner than normal. We show that this effect is specific to the myelination process and not due to changes in the proliferation or differentiation of oligodendrocyte precursor cells. We have further demonstrated that the reduction in myelination is due to the loss of Tyro3 on oligodendrocytes, and this effect may be mediated by activation of Erk1. Collectively, our findings indicate the critical importance of Tyro3 in potentiating central nervous system myelination. GLIA 2017 GLIA 2017;65:581–591

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Wildtype motoneurons, ALS‐Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling   SCI SCIE SCOPUS

    Madji Hounoum, Blandine (Université) , Mavel, Sylvie (François‐Rabelais, INSERM U930 “Imagerie et Cerveau,” CHRU de Tours, Tours, France) , Coque, Emmanuelle (Université) , Patin, Franck (François‐Rabelais, INSERM U930 “Imagerie et Cerveau,” CHRU de Tours, Tours, France) , Vourc'h, Patrick (The Neuroscience Institute Montpellier, INSERM U1051, Saint Eloi Hospital, Montpellier, France) , Marouillat, Sylviane (Université) , Nadal‐ (François‐Rabelais, INSERM U930 “Imagerie et Cerveau,” CHRU de Tours, Tours, France) , Desbarats, Lydie (Université) , Emond, Patrick (François‐Rabelais, INSERM U930 “Imagerie et Cerveau,” CHRU de Tours, Tours, France) , Corcia, Philippe (Université) , Andres, Christian R (François‐Rabelais, INSERM U930 “Imagerie et Cerveau,” CHRU de Tours, Tours, France) , Raoul, Cé (Université) , dric (François‐Rabelais, INSERM U930 “Imag) , Blasco, Hé , lè , ne
    GLIA v.65 no.4 ,pp. 592 - 605 , 2017 , 0894-1491 ,

    초록

    The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non‐cell‐autonomous effects of astrocytes. However, mechanisms underlying astrocyte‐mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS‐associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS‐causing mutated superoxide dismutase‐1 (SOD1) when co‐cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra‐ and intra‐cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592–605

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   The glia of the adult Drosophila nervous system   SCI SCIE SCOPUS

    Kremer, Malte C. (Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig‐Maximilians‐University Munich, Germany) , Jung, Christophe (Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig‐Maximilians‐University Munich, Germany) , Batelli, Sara (Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig‐Maximilians‐University Munich, Germany) , Rubin, Gerald M. (Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia) , Gaul, Ulrike (Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig‐Maximilians‐University Munich, Germany)
    GLIA v.65 no.4 ,pp. 606 - 638 , 2017 , 0894-1491 ,

    초록

    Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury   SCI SCIE SCOPUS

    Lindsay, Susan L. (Institute of Infection, College of Medical Veterinary and Life Sciences, Inflammation, and Immunity, University of Glasgow, Glasgow, G12 8TA, United Kingdom) , Toft, Andrew (Institute of Neuroscience and Psychology, College of Medical Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, United Kingdom) , Griffin, Jacob (Institute of Neuroscience and Psychology, College of Medical Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, United Kingdom) , M. M. Emraja, Ahmed (Institute of Neuroscience and Psychology, College of Medical Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, United Kingdom) , Barnett, Susan Carol (Institute of Infection, College of Medical Veterinary and Life Sciences, Inflammation, and Immunity, University of Glasgow, Glasgow, G12 8TA, United Kingdom) , Riddell, John S.
    GLIA v.65 no.4 ,pp. 639 - 656 , 2017 , 0894-1491 ,

    초록

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve   SCI SCIE SCOPUS

    Valliè (Centre de recherche du Centre hospitalier universitaire (CHU) de Québec—CHUL et Département de médecine moléculaire, Faculté) , res, Nicolas (de médecine, Université) , Barrette, Benoit (Laval, Québec, Canada) , Wang, Linda Xiang (Centre de recherche du Centre hospitalier universitaire (CHU) de Québec—CHUL et Département de médecine moléculaire, Faculté) , Bé (de médecine, Université) , langer, Erik (Laval, Québec, Canada) , Thiry, Louise (Centre de recherche du Centre hospitalier universitaire (CHU) de Québec—CHUL et Département de médecine moléculaire, Faculté) , Schneider, Marlon R. (de médecine, Université) , Filali, Mohammed (Laval, Québec, Canada) , Cô (Centre de recherche de l'Institut universitaire en santé) , té (mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Facult&) , , Daniel , Bretzner, Fré , dé , ric , Lacroix, Steve
    GLIA v.65 no.4 ,pp. 657 - 669 , 2017 , 0894-1491 ,

    초록

    When a nerve fiber is cut or crushed, the axon segment that is separated from the soma degenerates distal from the injury in a process termed Wallerian degeneration (WD). C57BL/6OlaHsd‐ Wld S (Wld S ) mutant mice exhibit significant delays in WD. This results in considerably delayed Schwann cell and macrophage responses and thus in impaired nerve regenerations. In our previous work, thousands of genes were screened by DNA microarrays and over 700 transcripts were found to be differentially expressed in the injured sciatic nerve of Wld S compared with wild‐type (WT) mice. One of these transcripts, betacellulin (Btc), was selected for further analysis since it has yet to be characterized in the nervous system, despite being known as a ligand of the ErbB receptor family. We show that Btc mRNA is strongly upregulated in immature and dedifferentiated Sox2 + Schwann cells located in the sciatic nerve distal stump of WT mice, but not Wld S mutants. Transgenic mice ubiquitously overexpressing Btc (Tg‐Btc) have increased numbers of Schmidt‐Lantermann incisures compared with WT mice, as revealed by Coherent anti‐Stokes Raman scattering (CARS). Tg‐Btc mice also have faster nerve conduction velocity. Finally, we found that deficiency in Btc reduces the proliferation of myelinating Schwann cells after sciatic nerve injury, while Btc overexpression induces Schwann cell proliferation and improves recovery of locomotor function. Taken together, these results suggest a novel regulatory role of Btc in axon‐Schwann cell interactions involved in myelin formation and nerve repair. GLIA 2017 GLIA 2017;65:657–669

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Astrocyte lipid metabolism is critical for synapse development and function in vivo   SCI SCIE SCOPUS

    van Deijk, Anne‐ (Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands) , Lieke F. (Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands) , Camargo, Nutabi (Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands) , Timmerman, Jaap (Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands) , Heistek, Tim (Department of Biochemistry and Cell Biology,) , Brouwers, Jos F. , Mogavero, Floriana , Mansvelder, Huibert D. , Smit, August B. , Verheijen, Mark H.G.
    GLIA v.65 no.4 ,pp. 670 - 682 , 2017 , 0894-1491 ,

    초록

    Abstract The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte‐derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte‐derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element‐binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage‐activating protein (SCAP) was deleted from GFAP‐expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP‐25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short‐term and long‐term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670–682

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지