본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Neurocomputing 15건

  1. [해외논문]   Editorial Board  


    Neurocomputing v.232 ,pp. IFC , 2017 , 0925-2312 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Editorial Board   SCIE SCOPUS


    Neurocomputing v.232 ,pp. IFC , 2017 , 0925-2312 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Advances in fuzzy cognitive maps theory   SCIE SCOPUS

    Froelich, W. , Salmeron, J.L.
    Neurocomputing v.232 ,pp. 1 - 2 , 2017 , 0925-2312 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Clustering techniques for Fuzzy Cognitive Map design for time series modeling   SCIE SCOPUS

    Homenda, W. , Jastrzebska, A.
    Neurocomputing v.232 ,pp. 3 - 15 , 2017 , 0925-2312 ,

    초록

    This study presents an approach to time series modeling with Fuzzy Cognitive Maps. In the paper we focus on initial modeling phase: map nodes selection. The research objective was to introduce algorithmic means to evaluate Fuzzy Cognitive Map design before training phase. We posed a hypothesis that application of cluster validity indexes could serve us in this endeavor. In order to validate the proposed approach we have conducted a suite of experiments on various time series, both synthetic and real-world. Five cluster validity indexes turned out to be especially valuable in our study. Results show that Fuzzy Cognitive Maps designed using one of the five selected indexes have superior quality. First, they are easy to interpret, because map nodes are related with the underlying data points. Second, after we train such maps, it turns out that the numerical quality of their predictions outrivals maps with other designs.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   A concept reduction approach for fuzzy cognitive map models in decision making and management   SCIE SCOPUS

    Papageorgiou, E.I. , Hatwagner, M.F. , Buruzs, A. , Koczy, L.T.
    Neurocomputing v.232 ,pp. 16 - 33 , 2017 , 0925-2312 ,

    초록

    Policy making, strategic planning and management in general are complex decision making tasks, where the formulation of a quantitative mathematical model may be difficult or impossible due to lack of numerical data and dependence on imprecise verbal expressions. For such systems, knowledge representation graphs and cognitive maps are most familiar and often used for modelling complexity and aiding decision making. Fuzzy Cognitive Maps (FCM), as graph-based cognitive models, have been successfully used for knowledge representation and reasoning. In modelling complex systems usually a large number of concepts need to be considered. However, it is often difficult in real applications to find the appropriate number of concepts. Using only a few concepts is not enough to represent the modelled system with the required precision, and increasing the number of concepts increases the complexity of the model quadratically; it is burdensome to work with for the experts. The contribution of this paper is two-fold: (i) to propose a new concept reduction approach for FCM and (ii) to apply it on developing less complex FCM for management and decision making. The behaviour of reduced models is analysed through a number of scenarios with respect to the original complex system. The main idea of the reduction is a clustering based on fuzzy tolerance relations. The new approach is focused on reducing complexity in the modelling process, which provides a more transparent and easy to use model for policy makers. The applicability of the proposed method is demonstrated via literature examples and a solid waste management case study that initiated this research. The results clearly show the advantageous characteristics of the proposed concept reduction method for FCM and its aid in policy making.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Continuously self-adjusting fuzzy cognitive map with semi-autonomous concepts   SCIE SCOPUS

    Stula, M. , Maras, J. , Mladenovic, S.
    Neurocomputing v.232 ,pp. 34 - 51 , 2017 , 0925-2312 ,

    초록

    Fuzzy cognitive maps (FCMs) are distributed computation systems used for qualitative modelling and behaviour simulation. Constructing an FCM is a time-consuming process and the quality of the resulting map is difficult to assess. In this paper we propose an extension to FCMs that self-adjusts the FCM based on real data from the modelled system. The self-adjusting FCM (SAFCM) changes the cause-effect relationships and concept inferences for each system data point with the goal of reducing the error between real data and values produced by the map. In this way, the burden of map construction imposed on the map builder is reduced and the initially constructed map can be evaluated by examining the degree of change caused by the self-adjustment. We tested the SAFCM on two case studies where we measured the degree of change to the initial map structure set up by an expert. The experiments showed that the self-adjusted maps produced results that were closer to real data than the maps that were initially set up by the expert. We also compared the SAFCM to a basic FCM and to an FCM that used a standard learning algorithm. The results showed that our algorithm had higher accuracy.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes   SCIE SCOPUS

    Salmeron, J.L. , Ruiz-Celma, A. , Mena, A.
    Neurocomputing v.232 ,pp. 52 - 57 , 2017 , 0925-2312 ,

    초록

    In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a multi-local search in balanced memetic algorithms for forecasting industrial drying processes. The first contribution of this paper is to propose a FCM model by an Evolutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local and balanced local search algorithm. Memetic algorithms can be tuned with different local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort between global and local search. To do this, we applied the proposed approach to the forecasting of moisture loss in industrial drying process. The thermal drying process is a relevant one used in many industrial processes such as food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries, and others. This research also shows that exploration of the search space is more relevant than finding local optima in the FCM models tested.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Interactive evolutionary optimization of fuzzy cognitive maps   SCIE SCOPUS

    Mls, K. , Cimler, R. , Vascak, J. , Puheim, M.
    Neurocomputing v.232 ,pp. 58 - 68 , 2017 , 0925-2312 ,

    초록

    Modeling dynamic systems with Fuzzy Cognitive Maps (FCMs) is characterized by the simplicity of the model representation and its execution. Furthermore, FCMs can easily incorporate human knowledge from the given domain. Despite the many advantages of FCMs, there are some drawbacks, too. The quality of knowledge obtained from the domain experts, and any differences and uncertainties in their opinions, has to be improved by different methods. We propose a new approach for handling incompleteness and natural uncertainty in expert evaluation of the connection matrix of a particular FCM. It is based on partial expert estimations and evolutionary algorithms in the role of an expert-driven optimization and outside of the FCM optimization (adaptation) research area known as Interactive Evolutionary Computing (IEC). In the present paper, a modification of IEC for the purposes of FCM optimization is presented, referred to as the IEO-FCM method, i.e., the Interactive Evolutionary Optimization of Fuzzy Cognitive Maps. Experimental results on two control problems suggest that the IEO-FCM method can improve the quality of an FCM even in situations without any measured data necessary for other known learning algorithms.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Multi-stage cognitive map for failures assessment of production processes: An extension in structure and algorithm   SCIE SCOPUS

    Rezaee, M.J. , Yousefi, S. , Babaei, M.
    Neurocomputing v.232 ,pp. 69 - 82 , 2017 , 0925-2312 ,

    초록

    In recent decade, fuzzy cognitive map has had significant applications in the systems analysis. But in majority of recent studies, a process perspective to different issues has not been considered in cognitive maps and the whole processes have been modeled separately or integratedly regardless of the relationships between processes. However, in complex systems that include the various sub systems, considering the process approach to modeling is necessary. In this study, to solve this problem, a multi-stage cognitive map has been introduced in which concepts are in various stages and any stage is associated to other stages with a series of causal relationships, and presenting a new learning algorithm based on the extended Delta rule to train cognitive map to reach the minimum of squares of errors. Furthermore, a new approach using multi-stage cognitive map and process failure mode and effects analysis are used to validate the new cognitive map. In this approach, calculating the score for prioritizing of failures is done based on severity, occurrence, and detection factors and causal relationships of each failure with other failures is carried out by using multi-stage cognitive map instead of conventional score of risk priority number. Also, for the presented approach, three learning algorithms including non-linear Hebbian, extended Delta rule algorithm and its combination with the differential evolutionary algorithm have been compared. The case study on automotive parts manufacturing unit, provides the ability of the proposed approach in prioritizing failures using integration of multi-stage cognitive map and new proposed learning algorithm for this purpose and the analysis of failure modes and the proposed algorithm.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Towards improving the efficiency of the fuzzy cognitive map classifier   SCIE SCOPUS

    Froelich, W.
    Neurocomputing v.232 ,pp. 83 - 93 , 2017 , 0925-2312 ,

    초록

    Fuzzy Cognitive Map (FCM) is a model that combines selected features of fuzzy sets and neural networks. FCM is usually applied as a decision support tool or as a predictive model for time series forecasting. It is less well known as a classifier. To perform the classification, numeric data produced by the FCM must be assigned to class labels. To accomplish this task, we propose a new algorithm for generating thresholds for the discrimination of FCM outcomes. The thresholds resulting from the proposed algorithm are determined after the learning of the FCM, and, then they are applied when classifying new data. The results of the experiments conducted with publicly available data provide evidence that the application of the proposed algorithm leads to improved efficiency of the FCM classifier. Comparative experiments showed that the proposed approach makes the FCM a very competitive alternative to other state-of-the-art classifiers.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지