본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Molecular and cellular neurosciences 16건

  1. [해외논문]   Cover 2   SCI SCIE SCOPUS


    Molecular and cellular neurosciences v.84 ,pp. IFC - IFC , 2017 , 1044-7431 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Special issue on 'Cytoskeleton-dependent regulation of neuronal network formation'   SCI SCIE SCOPUS

    Fath, Thomas (Corresponding author.)
    Molecular and cellular neurosciences v.84 ,pp. 1 - 3 , 2017 , 1044-7431 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Actin-based growth cone motility and guidance   SCI SCIE SCOPUS

    Omotade, Omotola F. (Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States ) , Pollitt, Stephanie L. (Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States ) , Zheng, James Q. (Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States)
    Molecular and cellular neurosciences v.84 ,pp. 4 - 10 , 2017 , 1044-7431 ,

    초록

    Abstract Nerve growth cones, the dilated tip of developing axons, are equipped with exquisite abilities to sense environmental cues and to move rapidly through complex terrains of developing brain, leading the axons to their specific targets for precise neuronal wiring. The actin cytoskeleton is the major component of the growth cone that powers its directional motility. Past research has provided significant insights into the mechanisms by which growth cones translate extracellular signals into directional migration. In this review, we summarize the actin-based mechanisms underlying directional growth cone motility, examine novel findings, and discuss the outstanding questions concerning the actin-based growth cone behaviors. Highlights Nerve growth cones are the actin-based motile structure of developing axons. Actin-based growth cone motility drives the extension of axons The actin cytoskeleton of the growth cone is the major target of complex signaling elicited by extracellular molecules. Guided axonal growth requires concerted efforts from the actin and microtubule cytoskeleton, membrane, and adhesion.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics   SCI SCIE SCOPUS

    Schelski, Max (Corresponding author.) , Bradke, Frank
    Molecular and cellular neurosciences v.84 ,pp. 11 - 28 , 2017 , 1044-7431 ,

    초록

    Abstract Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics – a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding. Highlights Feedback loops drive axon specification by promoting growth of one neurite and inhibiting growth of the other neurites Feedback loops are fueled by the neurite-length dependent accumulation of proteins, including polarity effectors Many polarity effectors are part of neurite-growth promoting signaling pathways and feedback loops Polarity effectors increase neurite growth by regulating the growth-cone cytoskeleton or membrane dynamics During neurite growth, the actin- and microtubule cytoskeleton are tightly coordinated with membrane dynamics

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?   SCI SCIE SCOPUS

    Gasperini, Robert J. (School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia ) , Pavez, Macarena (School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia ) , Thompson, Adrian C. (School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia ) , Mitchell, Camilla B. (Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia ) , Hardy, Holly (University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom ) , Young, Kaylene M. (Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia ) , Chilton, John K. (University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom ) , Foa, Lisa (School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia)
    Molecular and cellular neurosciences v.84 ,pp. 29 - 35 , 2017 , 1044-7431 ,

    초록

    Abstract The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Highlights Calcium signaling regulates the cytoskeleton to control growth cone motility during axon guidance. The source, amplitude and spatial regulation of calcium signals are thought to regulate the cytoskeleton at the growth cone. Calcium-activated phosphorylation is the key signaling mechanism that links calcium and the growth cone cytoskeleton. Direct links between the endoplasmic reticulum and the cytoskeleton are implicated in growth cone motility.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches   SCI SCIE SCOPUS

    Armijo-Weingart, Lorena (Corresponding author.) , Gallo, Gianluca
    Molecular and cellular neurosciences v.84 ,pp. 36 - 47 , 2017 , 1044-7431 ,

    초록

    Abstract The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch. Highlights Branching requires coordination of the cytoskeleton. Coordination of the cytoskeleton is mediated by actin-microtubule binding proteins. Mitochondria have a pivotal role in determining sites of branching. Mitochondria function regulates the axonal actin filament cytoskeleton. Intra-axonal protein synthesis is required for NGF-induced branching.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function   SCI SCIE SCOPUS

    Gray, Kevin T. (Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States ) , Kostyukova, Alla S. (Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States ) , Fath, Thomas (School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia)
    Molecular and cellular neurosciences v.84 ,pp. 48 - 57 , 2017 , 1044-7431 ,

    초록

    Abstract Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development. Highlights Review on the role of tropomodulins and tropomyosins in neurons Discussion of the interaction between tropomodulin and tropomyosin in neurite outgrowth Dysregulation of the actin tropomodulins, tropomyosins and the actin cytoskeleton in the diseased or injured nervous system

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Tubulins and brain development – The origins of functional specification   SCI SCIE SCOPUS

    Breuss, Martin W. (Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA ) , Leca, Ines (Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria ) , Gstrein, Thomas (Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria ) , Hansen, Andi H. (Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria ) , Keays, David A. (Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria)
    Molecular and cellular neurosciences v.84 ,pp. 58 - 67 , 2017 , 1044-7431 ,

    초록

    Abstract The development of the vertebrate central nervous system is reliant on a complex cascade of biological processes that include mitotic division, relocation of migrating neurons, and the extension of dendritic and axonal processes. Each of these cellular events requires the diverse functional repertoire of the microtubule cytoskeleton for the generation of forces, assembly of macromolecular complexes and transport of molecules and organelles. The tubulins are a multi-gene family that encode for the constituents of microtubules, and have been implicated in a spectrum of neurological disorders. Evidence is building that different tubulins tune the functional properties of the microtubule cytoskeleton dependent on the cell type, developmental profile and subcellular localisation. Here we review of the origins of the functional specification of the tubulin gene family in the developing brain at a transcriptional, translational, and post-transcriptional level. We remind the reader that tubulins are not just loading controls for your average Western blot. Highlights Microtubules are essential for the generation, migration and differentiation of neurons. Microtubules are composed of tubulin proteins. Different tubulins tune the functional properties of the microtubule cytoskeleton. This functional specification results from variation at a genomic, mRNA and protein level.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   The third wave: Intermediate filaments in the maturing nervous system   SCI SCIE SCOPUS

    Kirkcaldie, Matthew T.K. (Corresponding author.) , Dwyer, Samuel T.
    Molecular and cellular neurosciences v.84 ,pp. 68 - 76 , 2017 , 1044-7431 ,

    초록

    Abstract Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation. Highlights Intermediate filaments are essential in consolidating nervous system structure. Their sequential expression throughout the nervous system accompanies functional maturation Literature on the regional expression of neurofilaments in development is reviewed. Neurofilaments enable the structural maturation and myelination of axons, as well as ongoing plasticity in adulthood.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   New waves in dendritic spine actin cytoskeleton: From branches and bundles to rings, from actin binding proteins to post-translational modifications   SCI SCIE SCOPUS

    Bertling, Enni (Corresponding author.) , Hotulainen, Pirta
    Molecular and cellular neurosciences v.84 ,pp. 77 - 84 , 2017 , 1044-7431 ,

    초록

    Abstract Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the number or strength of synapses are physiological mechanisms behind learning. The growth and maturation of dendritic spines and the activity-induced changes to their morphology are all based on changes to the actin cytoskeleton. In this review, we will discuss the regulation of the actin cytoskeleton in dendritic spine formation and maturation, as well as in synaptic strengthening. Concerning spine formation, we will focus on spine initiation, which has received less attention in the literature. We will also examine the recently revealed regulation of the actin cytoskeleton through post-translational modifications of actin monomers, in addition to the conventional regulation of actin via actin-binding proteins. Highlights Dendritic spines are initiated through activity-induced or activity-independent mechanisms. Actin rings appear to be ubiquitous in axons, dendrites and spine necks with a primarily structural supportive role. Actin phosphorylation offers a rapid and reversible way to control the actin cytoskeleton in dendritic spines.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지