본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Journal of controlled release : official journal o... 20건

  1. [해외논문]   Graphical Abstracts Contents Listing   SCI SCIE


    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. e1 - e6 , 2017 , 0168-3659 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Editorial Board   SCI SCIE


    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. ii - ii , 2017 , 0168-3659 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Calendar   SCI SCIE


    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. I - I , 2017 , 0168-3659 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells?   SCI SCIE

    Jiang, Jinlin (Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States ) , Kao, Chen-Yuan (Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States ) , Papoutsakis, Eleftherios T. (Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States)
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 1 - 18 , 2017 , 0168-3659 ,

    초록

    Abstract Megakaryocytic microparticles (MkMPs), the most abundant MPs in circulation, can induce the differentiation of hematopoietic stem and progenitor cells (HSPCs) into functional megakaryocytes. This MkMP capability could be explored for applications in transfusion medicine but also for delivery of nucleic acids and other molecules to HSPCs for targeted molecular therapy. Understanding how MkMPs target, deliver cargo and alter the fate of HSPCs is important for exploring such applications. We show that MkMPs, which are distinct from Mk exosomes (MkExos), target HSPCs with high specificity since they have no effect on other ontologically or physiologically related cells, namely mesenchymal stem cells, endothelial cells or granulocytes. The outcome is also specific: only cells of the megakaryocytic lineage are generated. Observation of intact fluorescently-tagged MkMPs inside HSPCs demonstrates endocytosis as one mechanism of cargo delivery. Fluorescent labeling and scanning electron microscopy (SEM) imaging show that direct fusion of MkMPs into HSPCs is also engaged in cargo delivery. SEM imaging detailed the membrane-fusion process in four stages leading to full adsorption of MkMPs into HSPCs. Furthermore, macropinocytosis and lipid raft-mediated were shown here as mechanisms of MkMP uptake by HSPC. In contrast, the ontologically related platelet-derived MPs (PMPs) cannot be taken up by HSPCs although they bind to and induce HSPC aggregation. We show that platelet-like thrombin activation is apparently responsible for the different biological effects of MkMPs versus PMPs on HSPCs. We show that HSPC uropods are the preferential site for MkMP binding, and that CD54 (ICAM-1), CD11b, CD18 and CD43, localized on HSPC uropods, are involved in MkMP binding to HSPCs. Finally, we show that MkMP RNA is largely responsible for HSPC programming into Mk differentiation. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Rapid and facile quantitation of polyplex endocytic trafficking   SCI SCIE

    Lazebnik, Mihael (Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA. ) , Pack, Daniel W. (Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA)
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 19 - 27 , 2017 , 0168-3659 ,

    초록

    Abstract Design of safe and effective synthetic nucleic acid delivery vectors such as polycation/DNA or polycation/siRNA complexes (polyplexes) will be facilitated by quantitative understanding of the mechanisms by which such materials escort cargo from the cell surface to the nucleus. In particular, the mechanisms of cellular internalization by various endocytosis pathways and subsequent endocytic vesicle trafficking have been shown to strongly affect nucleic acid delivery efficiency. Fluorescence microscopy and subcellular fractionation methods are commonly employed to follow intracellular trafficking of biomolecules and nanoparticulate delivery systems such as polyplexes. However, it is difficult to obtain quantitative data from microscopy and subcellular fractionation is experimentally difficult and low throughput. We have developed a method for quantifying the transport of polyplexes through important endocytic vesicles. The method is based on polymerization of 3,3′-diaminobenzidine by endocytosed horseradish peroxidase, causing an increase in the vesicle density, resistance to being solubilized by detergent and quenching of fluorophores within the vesicles, which makes them easy to separate and quantify. Using this method in HeLa cells, we have observed polyethylenimine/siRNA polyplexes initially appearing in early endosomes and rapidly moving to other compartments within 30min post-transfection. At the same time, we observed the kinetics of accumulation of the polyplexes in lysosomes at a similar rate. The results from the new method are consistent with similar measurements by confocal fluorescence microscopy and subcellular fractionation of endocytic vesicles on a Percoll gradient. The relative ease of this new method will aid investigation of gene delivery mechanisms by providing the means to rapidly quantify endocytic trafficking of polyplexes and other vectors. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Safe approaches for camptothecin delivery: Structural analogues and nanomedicines   SCI SCIE

    Botella, Pablo (Corresponding author.) , Rivero-Buceta, Eva
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 28 - 54 , 2017 , 0168-3659 ,

    초록

    Abstract Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer   SCI SCIE

    VanOsdol, Joshua (Corresponding author at: Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK-74074, United States.) , Ektate, Kalyani , Ramasamy, Selvarani , Maples, Danny , Collins, Willie , Malayer, Jerry , Ranjan, Ashish
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 55 - 63 , 2017 , 0168-3659 ,

    초록

    Abstract Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and HIFU are limited by the half-life of the contrast agent and challenges in accurate control of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this study were to: 1) synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs (ELTSLs) and NTSLs (ENTSLs), 2) evaluate in vivo drug release following short duration (~20min each) HIFU treatments administered sequentially over an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create ELTSLs and ENTSLs, which then were characterized for size, release in a physiological buffer, and ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40–42°C) was completed within 90min after liposome infusion administered sequentially in three regions of the tumor. Fluorescence microscopy and high performance liquid chromatography analysis were performed to determine the spatial distribution and concentration of Dox in the treated regions. PFP encapsulation within ELTSLs and ENTSLs did not impact size or caused premature drug release in physiological buffer. As time progressed, the delivery of Dox decreased in HIFU-treated tumors with ELTSLs, but this phenomenon was absent in the LTSL, NTSL, and ENTSL groups. Most importantly, PFP encapsulation improved Dox penetration in the tumor periphery and core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from this study suggest that short duration and sequential HIFU treatment could have significant benefits and that its action can be potentiated by nanobubble agents to result in improved drug penetration. Graphical abstract Schematic illustration of Doxorubicin (dox) delivery regulated by zonal administration of High Intensity Focused Ultrasound (HIFU) across mouse colon tumor. [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics   SCI SCIE

    Lu, Tao (Correspondence to: T. Lu, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Room Ee175, 3000CA Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands. ) , ten Hagen, Timo L.M. (Correspondence to: T. L.M. ten Hagen, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Room Ee 0104a, PO Box 1738, 3000 DR Rotterdam, The Netherlands.)
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 64 - 72 , 2017 , 0168-3659 ,

    초록

    Abstract Thermosensitive liposomes (TSL) receive attention due to their rapid externally controlled drug release at transition temperature in combination with hyperthermia. This rapid release feature of TSL occurs when the liposome membrane is going through a phase change which results in numerous interfaces, at so-called crystal grain boundaries. Based on experience with TSLs, our group found that thermosensitive liposomes formulated by binary compositions of DPPC and DSPC at proper ratios are able to exhibit rapid release without incorporation of release-promoting components. The aim of this study was to understand the mechanism of rapid release from bi-component DPPC-DSPC based TSL. Based on the investigation of a series of TSLs formulated by different DPPC-DSPC ratios, and through the analysis of binary-phase diagrams of DPPC-DSPC TSLs, we conclude that inhomogeneous crystal grains are formed in bi-component TSL membranes rather than mono-component, thereby facilitating content release. The resulting inhomogeneous membrane pattern is affected by DPPC/DSPC ratio, i.e. this determines the number of interfaces between solid and liquid phases at transition temperature, which can be diminished by addition of cholesterol. At appropriate DPPC/DSPC ratio, substantive solid/liquid interfaces can be generated not only between membrane domains but also between crystal grains in each domain of the liposome membranes, therefore improving content release from the TSL at transition temperatures. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers   SCI SCIE

    England, Richard M. (AstraZeneca, Pharmaceutical Sciences, Innovative Medicines, Silk Court Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom. ) , Hare, Jennifer I. (AstraZeneca, IMED Oncology, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom ) , Barnes, Jennifer (AstraZeneca, Pathological Sciences, Drug Safety and Metabolism, Cambridge, CB4 0WG, United Kingdom ) , Wilson, Joanne (AstraZeneca, IMED Oncology, Li Ka Shing Centre, CRUK Cambridge Institute, Cambridge CB2 0RE, United Kingdom ) , Smith, Aaron (AstraZeneca, IMED Oncology, Li Ka Shing Centre, CRUK Cambridge Institute, Cambridge CB2 0RE, United Kingdom ) , Strittmatter, Nicole (AstraZeneca, Pathological Sciences, Drug Safety and Metabolism, Cambridge, CB4 0WG, United Kingdom ) , Kemmitt, Paul D. (AstraZeneca, IMED Oncology, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom ) , Waring, Michael J. (Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom ) , Barry, Simon T. (AstraZeneca, IMED Oncology, Li Ka Shing Centre, CRUK Cambridge Institute, Cambridge CB2 0RE, United Kingdom ;) , Alexander, Cameron , Ashford, Marianne B.
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 73 - 85 , 2017 , 0168-3659 ,

    초록

    Abstract Irinotecan is used clinically for the treatment of colorectal cancer; however, its utility is limited by its narrow therapeutic index. We describe the use of a generation 5 L -lysine dendrimer that has been part-modified with a polyoxazoline as a drug delivery vehicle for improving the therapeutic index of SN-38, the active metabolite of irinotecan. By conjugating SN-38 to the dendrimer via different linker technologies we sought to vary the release rate of the drug to generate diverse pharmacokinetic profiles. Three conjugates with plasma release half-lives of 2.5h, 21h, and 72h were tested for efficacy and toxicity using a mouse SW620 xenograft model. In this model, the linker with a plasma release half-life of 21h achieved sustained SN-38 exposure in blood, above the target concentration. Control over the release rate of the drug from the linker, combined with prolonged circulation of the dendrimer, enabled administration of an efficacious dose of SN-38, achieving significant regression of the SW620 tumours. The conjugates with 2.5 and 72h release half-lives did not achieve an anti-tumour effect. Intraperitoneal dosing of the clinically used prodrug irinotecan produces high initial and local concentrations of SN-38, which are associated with gastrointestinal toxicity. Administration of the 21h release dendrimer conjugate did not produce a high initial C max of SN-38. Consequently, a marked reduction in gastrointestinal toxicity was observed relative to irinotecan treatment. Additional studies investigating the dose concentrations and dose scheduling showed that a weekly dosing schedule of 4mg SN-38/kg was the most efficacious regimen. After 4 doses at weekly intervals, the survival period of the mice extended beyond 70 days following the final dose. These extensive studies have allowed us to identify a linker, dose and dosing regimen for SN-38 conjugated to polyoxazoline-modified dendrimer that maximised efficacy and minimised adverse side effects. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Topical and cutaneous delivery using nanosystems   SCI SCIE

    Roberts, MS (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia ) , Mohammed, Y (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia ) , Pastore, MN (School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia ) , Namjoshi, S (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia ) , Yousef, S (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia ) , Alinaghi, A (School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia ) , Haridass, IN (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia ) , Abd, E (Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Au) , Leite-Silva, VR , Benson, HAE , Grice, JE
    Journal of controlled release : official journal of the Controlled Release Society v.247 ,pp. 86 - 105 , 2017 , 0168-3659 ,

    초록

    Abstract The goal of topical and cutaneous delivery is to deliver therapeutic and other substances to a desired target site in the skin at appropriate doses to achieve a safe and efficacious outcome. Normally, however, when the stratum corneum is intact and the skin barrier is uncompromised, this is limited to molecules that are relatively lipophilic, small and uncharged, thereby excluding many potentially useful therapeutic peptides, proteins, vaccines, gene fragments or drug-carrying particles. In this review we will describe how nanosystems are being increasingly exploited for topical and cutaneous delivery, particularly for these previously difficult substances. This is also being driven by the development of novel technologies, which include minimally invasive delivery systems and more precise fabrication techniques. While there is a vast array of nanosystems under development and many undergoing advanced clinical trials, relatively few have achieved full translation to clinical practice. This slow uptake may be due, in part, to the need for a rigorous demonstration of safety in these new nanotechnologies. Some of the safety aspects associated with nanosystems will be considered in this review. Graphical abstract [DISPLAY OMISSION]

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지