본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Theoretical population biology 6건

  1. [해외논문]   Editorial Board   SCI SCIE


    Theoretical population biology v.118 ,pp. IFC - IFC , 2017 , 0040-5809 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Computing the joint distribution of the total tree length across loci in populations with variable size   SCI SCIE

    Miroshnikov, Alexey (University of California, Los Angeles, Department of Mathematics, United States ) , Steinrü (University of Chicago, Department of Ecology and Evolution, United States) , cken, Matthias
    Theoretical population biology v.118 ,pp. 1 - 19 , 2017 , 0040-5809 ,

    초록

    Abstract In recent years, a number of methods have been developed to infer complex demographic histories, especially historical population size changes, from genomic sequence data. Coalescent Hidden Markov Models have proven to be particularly useful for this type of inference. Due to the Markovian structure of these models, an essential building block is the joint distribution of local genealogical trees, or statistics of these genealogies, at two neighboring loci in populations of variable size. Here, we present a novel method to compute the marginal and the joint distribution of the total length of the genealogical trees at two loci separated by at most one recombination event for samples of arbitrary size. To our knowledge, no method to compute these distributions has been presented in the literature to date. We show that they can be obtained from the solution of certain hyperbolic systems of partial differential equations. We present a numerical algorithm, based on the method of characteristics, that can be used to efficiently and accurately solve these systems and compute the marginal and the joint distributions. We demonstrate its utility to study the properties of the joint distribution. Our flexible method can be straightforwardly extended to handle an arbitrary fixed number of recombination events, to include the distributions of other statistics of the genealogies as well, and can also be applied in structured populations.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   The parent–offspring probability when sampling age-structured populations   SCI SCIE

    Skaug, Hans J.
    Theoretical population biology v.118 ,pp. 20 - 26 , 2017 , 0040-5809 ,

    초록

    Abstract We consider two individuals sampled from an age-structured population, and derive the probability that these have a parent–offspring relationship. Such probabilities play an important role in the recently proposed close-kin mark-recapture methods. The probability is decomposed into three terms. The first is the probability of the parent being alive, the second term involves the mechanism by which individuals are sampled, and the third term is a contribution from the observed age of the parent. A stable age distribution in the population is assumed, and we provide an expression for how this distribution is perturbed by the information that an individual has given birth at a particular time point in the past or in the future. Calculations are performed from the perspective of the offspring, but we also make comparison to the situation where the perspective is put on the parent. Although the resulting probabilities are the same, the actual calculations differ, due to the asymmetry of a parent–offspring relationship.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Evolution of the sex ratio and effective number under gynodioecy and androdioecy   SCI SCIE

    Uyenoyama, Marcy K. (Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA ) , Takebayashi, Naoki (Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska, Fairbanks, Fairbanks, AK 99775, USA)
    Theoretical population biology v.118 ,pp. 27 - 45 , 2017 , 0040-5809 ,

    초록

    Abstract We address the evolution of effective number of individuals under androdioecy and gynodioecy. We analyze dynamic models of autosomal modifiers of weak effect on sex expression. In our zygote control models, the sex expressed by a zygote depends on its own genotype, while in our maternal control models, it depends on the genotype of its maternal parent. Our analysis unifies full multi-dimensional local stability analysis with the Li-Price equation, which for all its heuristic appeal, describes evolutionary change over a single generation. We define a point in the neighborhood of a fixation state from which a single-generation step indicates the asymptotic behavior of the frequency of a modifier allele initiated at an arbitrary point near the fixation state. A concept of heritability appropriate for the evolutionary modification of sex emerges from the Li-Priceframework. We incorporate our theoretical analysis into our previously-developed Bayesian inference framework to develop a new method for inferring the viability of gonochores (males or females) relative to hermaphrodites. Applying this approach to microsatellite data derived from natural populations of the gynodioecious plant Schiedea salicaria and the androdioecious killifish Kryptolebias marmoratus , we find that while female and hermaphrodite S. salicaria appear to have similar viabilities, male K. marmoratus appear to survive to reproductive age at less than half the rate of hermaphrodites.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Commentary: Fisher's infinitesimal model: A story for the ages   SCI SCIE

    Turelli, Michael
    Theoretical population biology v.118 ,pp. 46 - 49 , 2017 , 0040-5809 ,

    초록

    Abstract Mendel (1866) suggested that if many heritable “factors” contribute to a trait, near-continuous variation could result. Fisher (1918) clarified the connection between Mendelian inheritance and continuous trait variation by assuming many loci, each with small effect, and by informally invoking the central limit theorem. Barton et al. (2017) rigorously analyze the approach to a multivariate Gaussian distribution of the genetic effects for descendants of parents who may be related. This commentary distinguishes three nested approximations, referred to as “infinitesimal genetics,” “Gaussian descendants” and “Gaussian population,” each plausibly called “the infinitesimal model.” The first and most basic is Fisher’s “infinitesimal” approximation of the underlying genetics – namely, many loci, each making a small contribution to the total variance. As Barton et al. (2017) show, in the limit as the number of loci increases (with enough additivity), the distribution of genotypic values for descendants approaches a multivariate Gaussian, whose variance–covariance structure depends only on the relatedness, not the phenotypes, of the parents (or whether their population experiences selection or other processes such as mutation and migration). Barton et al. (2017) call this rigorously defensible “Gaussian descendants” approximation “the infinitesimal model.” However, it is widely assumed that Fisher’s genetic assumptions yield another Gaussian approximation, in which the distribution of breeding values in a population follows a Gaussian — even if the population is subject to non-Gaussian selection. This third “Gaussian population” approximation, is also described as the “infinitesimal model.” Unlike the “Gaussian descendants” approximation, this third approximation cannot be rigorously justified, except in a weak-selection limit, even for a purely additive model. Nevertheless, it underlies the two most widely used descriptions of selection-induced changes in trait means and genetic variances, the “breeder’s equation” and the “Bulmer effect.” Future generations may understand why the “infinitesimal model” provides such useful approximations in the face of epistasis, linkage, linkage disequilibrium and strong selection.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   The infinitesimal model: Definition, derivation, and implications   SCI SCIE

    Barton, N.H. (Institute of Science and Technology, Am Campus I, A-3400 Klosterneuberg, Austria ) , Etheridge, A.M. (Department of Statistics, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK ) , Vé (Centre de Mathématiques Appliquées, École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France) , ber, A.
    Theoretical population biology v.118 ,pp. 50 - 73 , 2017 , 0040-5809 ,

    초록

    Abstract Our focus here is on the infinitesimal model . In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1 ∕ M . Simulations suggest that in some cases the convergence may be as fast as 1 ∕ M .

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지