본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Aerospace science and technology 67건

  1. [해외논문]   Editorial Board  


    Aerospace science and technology v.78 ,pp. ii - ii , 2018 , 1270-9638 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam  

    Arunkumar, M.P. (Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522502, India ) , Pitchaimani, Jeyaraj (Department of Mechanical Engineering, National Institute of Technology Karnataka Surathkal, Mangalore 575 025, India ) , Gangadharan, K.V. (Department of Mechanical Engineering, National Institute of Technology Karnataka Surathkal, Mangalore 575 025, India ) , Leninbabu, M.C. (School of Mechanical and Building Sciences, VIT University, Chennai Campus, Tamilnadu 600127, India)
    Aerospace science and technology v.78 ,pp. 1 - 11 , 2018 , 1270-9638 ,

    초록

    Abstract This paper presents the studies carried out for improving the acoustic behavior of truss core sandwich panel, which is mostly used in aerospace structural applications. The empty space of the truss core is filled with polyurethane foam (PUF) to achieve better vibro-acoustic and sound transmission loss characteristics. Initially equivalent elastic properties of the foam filled truss core sandwich panel are calculated. Then, the vibration response of the panel under a harmonic excitation is obtained based on the equivalent 2D finite element model. Finally, the vibration response is given as an input to the Rayleigh integral code built in-house to obtain the acoustic and sound transmission loss characteristics. The results revealed that PUF filling of the empty space of the truss core, significantly reduces resonant amplitudes of both vibration and acoustic responses. It is also observed that foam filling reduces the overall sound power level significantly. Similarly, sound transmission loss studies revealed that, sudden dips at resonance frequencies are significantly reduced. Also an experiment is conducted on forced vibration response of honeycomb core sandwich panel to show that equivalent 2D model can be used for predicting sound power level and transmission loss behavior.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Optimization of rough transonic axial compressor  

    Li, Zhihui (School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China ) , Liu, Yanming (School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)
    Aerospace science and technology v.78 ,pp. 12 - 25 , 2018 , 1270-9638 ,

    초록

    Abstract The influence of wall roughness on the performance of the axial transonic compressor stage was investigated with different values of roughness added to the blade, hub and shroud sections. The dimensionless sand-grain roughness model was used to capture the roughness effect and the results indicated that the increment of both end wall and blade surface roughness caused the deterioration of compressor stage performance. The sensitivity analysis method was used to distinguish which section mostly contributes to the whole performance degradation. Approximately a 95.31% degradation of the compressor peak efficiency came from the induced blade roughness, 3.58% from the hub surface roughness and only 1.08% from the casing surface. The present study also investigated how the optimized design of compressor blades was affected by considering a surface roughness effect representative of in-service use. Two optimization strategies were proposed to improve the compressor efficiency and total pressure ratio by changing the distributions of the blade angles along the chord. The first strategy considered the compressor surface to be hydraulically smooth and the consequent Pareto Front designs were degraded by increasing the level of surface roughness with the second approach considering the surface roughness from the outset of optimization. The optimization result showed that the degraded compressors from the first strategy was still among the best performing Pareto Front designs in terms of adiabatic efficiency and pressure ratio when compared to the second approach. This means that the roughness effect can be regarded as an additional factor and be considered in the end of the design process for single-stage compressors.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Effect of dual-catalytic bed using two different catalyst sizes for hydrogen peroxide thruster  

    Heo, Seonuk (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea ) , Jo, Sungkwon (Plasma Laboratory, Korea Institute of Machinery and Materials, Republic of Korea ) , Yun, Yongtae (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea ) , Kwon, Sejin (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea)
    Aerospace science and technology v.78 ,pp. 26 - 32 , 2018 , 1270-9638 ,

    초록

    Abstract For a catalytic bed in hydrogen peroxide based propulsion systems, a high pressure drop can cause significant problems. Hence, a dual-catalytic bed was suggested to reduce the pressure drop across the catalytic bed. Catalysts of two different sizes (1/8 inch, and 1.18–2.00 mm) were employed, which were fabricated using an impregnation method with MnO 2 and PbO as the active materials. The upstream and downstream sides of the dual-catalytic bed were loaded with the catalyst with dimensions of 1.18–2.00 mm and 1/8 inch, respectively. The effectiveness of the dual-catalytic bed was verified by conducting hot-fire tests with hydrogen peroxide monopropellant mode. The trends in the pressure drop across the catalytic bed and the characteristic velocity efficiency were investigated with respect to the mass flux and mass ratio of the loaded catalysts. As the mass ratio of the smaller catalyst was reduced to 18.3%, the pressure drop constantly decreased with an identical mass flux, though most of the fed hydrogen peroxide was still fully decomposed.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Global stabilization of the linearized three-axis axisymmetric spacecraft attitude control system by bounded linear feedback  

    Luo, Weiwei (Corresponding author.) , Zhou, Bin , Duan, Guang-Ren
    Aerospace science and technology v.78 ,pp. 33 - 42 , 2018 , 1270-9638 ,

    초록

    Abstract In this paper, the three-axis attitude stabilization of the axisymmetric spacecraft with bounded inputs is studied. By constructing some novel state transformations, saturated linear state feedback controllers are constructed for the considered attitude control system. By constructing suitable quadratic plus integral Lyapunov functions, globally asymptotic stability of the closed-loop systems is proved if the feedback gain parameters satisfy some explicit conditions. By solving some min–max optimization problems, a global optimal feedback gain for the underactuated attitude stabilization system is proposed such that the convergence rate of the linearized closed-loop system is maximized. Numerical simulations show the effectiveness of the proposed approaches.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   A dual-rate hybrid filtering method to eliminate high-order position errors of GPS in POS  

    Zhu, Zhuangsheng (Beihang University, Beijing 10091, China ) , Li, Chi (Beihang University, Beijing 10091, China ) , Ye, Wen (Beihang University, Beijing 10091, China)
    Aerospace science and technology v.78 ,pp. 43 - 53 , 2018 , 1270-9638 ,

    초록

    Abstract The Position and Orientation System (POS) serves as a key component for the airborne remote sensing system, which integrates Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) to provide the reliable and continuous motion compensation using Kalman Filter (KF). However, the high-order position errors resulting from C/A (Coarse/Acquisition) Code GPS cannot be effectively compensated or estimated by the traditional KF, which severely weakens the imaging quality. In this paper, we propose a Dual-rate Hybrid Filter (DHF) to deal with the high-order position errors based on Least Squares Support Vector Machine (LSSVM) and Kalman Filter. DHF builds a low update rate filter by integrating high-precision SINS and online LSSVM to isolate the high-order position errors. Meanwhile, the high update rate filter of DHF maintains the advantages of traditional SINS/GPS integrated navigation system to restrain the accumulation errors of system. The experimental results show that the proposed method significantly reduces the high-order position errors by 84.6% at each sampling period comparing with the conventional single KF based SINS/GPS integrated navigation system.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   A new sliding mode control design for integrated missile guidance and control system  

    Guo, Jianguo (Corresponding author at: Institute of Precision Guidance and Control, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China.) , Xiong, Yu , Zhou, Jun
    Aerospace science and technology v.78 ,pp. 54 - 61 , 2018 , 1270-9638 ,

    초록

    Abstract A new sliding mode control algorithm for integrated guidance and control (IGC) system is proposed in this paper. Firstly, the IGC model is established and the nonlinearities, target maneuvers, perturbations caused by variations of aerodynamic parameters, etc. are viewed as disturbance, so that the IGC system becomes a mismatched uncertain linear system. Secondly, a second-order disturbance observer is used to estimate the disturbances and their derivatives. Thirdly, an integral sliding mode surface is designed to obtain the rudder deflection command directly instead of the back-stepping control (BC) algorithm used in conventional IGC system, which achieves the real sense of IGC, and the stability of the system is proven strictly by Lyapunov stability theory. Finally, the superiority of the proposed IGC method is verified by comparing the simulation results of different methods under different cases.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Pendulum maneuvering strategy for hypersonic glide vehicles  

    Zhu, Jianwen (Xi'an Research Institution of Hi-Technology, Xi'an, 710025, China ) , He, Ruizhi (National University of Defense Technology, Changsha, 410073, China ) , Tang, Guojian (National University of Defense Technology, Changsha, 410073, China ) , Bao, Weimin (National University of Defense Technology, Changsha, 410073, China)
    Aerospace science and technology v.78 ,pp. 62 - 70 , 2018 , 1270-9638 ,

    초록

    Abstract In order to improve the penetration performance of hypersonic glide vehicles, a lateral pendulum maneuvering strategy is proposed. A single radar trajectory tracking model is established and EKF is used to estimate the entire trajectory parameters. Based on the analysis of the composition of the defense system and the intercepting mechanism, the pendulum maneuvering trajectory is designed, and the influencing factors of the gliding penetration performance are analyzed. Then, an integrated index of penetration performance consists of the hit point prediction error, intercepting velocity, overload and the energy consumption caused by maneuver is constructed. Furthermore, a maneuvering strategy is proposed that the first maneuver is performed to enlarge prediction error of hitting point when the vehicle entrances the radar coverage, and the second one is carried out in the intercept zone to increase the maneuvering overload. The two maneuvers are the combat of the glider to the early warning system and the intercept system respectively, which can effectively enhance the penetration performance with less energy consumption.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Assessment of low-fidelity fluid–structure interaction model for flexible propeller blades  

    Sodja, Jurij (Delft University of Technology, the Netherlands ) , De Breuker, Roeland (Delft University of Technology, the Netherlands ) , Nozak, Dejan (University of Ljubljana, Slovenia ) , Drazumeric, Radovan (University of Ljubljana, Slovenia ) , Marzocca, Pier (RMIT University, Australia)
    Aerospace science and technology v.78 ,pp. 71 - 88 , 2018 , 1270-9638 ,

    초록

    Abstract Low-fidelity fluid–structure interaction model of flexible propeller blades is assessed by means of comparison with high-fidelity aeroelastic results. The low-fidelity model is based on a coupled extended blade-element momentum model and non-linear beam theory which were both implemented in Matlab. High-fidelity fluid–structure interaction analysis is based on coupling commercial computational fluid dynamics and computational structural dynamics codes. For this purpose, Ansys CFX ? and Ansys Mechanical ? were used. Three different flexible propeller blade geometries are considered in this study: straight, backward swept, and forward swept. The specific backward and forward swept blades are chosen due to their aeroelastic response and its influence on the propulsive performance of the blade while a straight blade was selected in order to serve as a reference. First, the high-fidelity method is validated against experimental data available for the selected blade geometries. Then the high- and low-fidelity methods are compared in terms of integral thrust and breaking power as well as their respective distributions along the blades are compared for different advancing ratios. In a structural sense, the comparison is performed by analyzing the blade bending and torsional deformation. Based on the obtained results, given the simplicity of the low-fidelity method, it can be concluded that the agreement between the two methods is reasonably good. Moreover, an important result of the comparison study is an observation that the advance ratio is no longer a valid measure of similarity in the case of flexible propeller blades and the behavior of such blades can change significantly with changing operating conditions while keeping the advance ratio constant. This observation is supported by both high- and low-fidelity methods.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Influence of Mach number and angle of attack on the two-dimensional transonic buffet phenomenon  

    Giannelis, Nicholas F. (School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Sydney, Australia ) , Levinski, Oleg (Aerodynamics and Aeroelasticity, Aerospace Division, Defence Science and Technology Group, Melbourne, VIC, 3207, Australia ) , Vio, Gareth A. (School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Sydney, Australia)
    Aerospace science and technology v.78 ,pp. 89 - 101 , 2018 , 1270-9638 ,

    초록

    Abstract Within a narrow band of flight conditions in the transonic regime, self-sustained shock oscillations that involve the interaction between shock-waves and intermittently separated shear layers may develop. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both aircraft handling quality and structural integrity. In this investigation, numerical simulation of transonic shock buffet over the OAT15A aerofoil is performed to explore the buffet envelope. Unsteady Reynolds-Averaged Navier–Stokes simulations are validated against available experimental data to ascertain the most effective combination of simulation parameters to reproduce autonomous shock oscillations. From the baseline test case, the influence of Mach number and angle of attack on the nature of the buffet response is investigated. Radial Basis Function surrogate models are developed to represent the variation of buffet amplitude and frequency with flight condition. While the frequency is found to increase monotonically with both parameters, variation in buffet amplitude through the region of shock unsteadiness is more complex, particularly at high angles of attack. This is related to a bifurcation in the behaviour of the shock. As incidence increases from onset, the shock dynamics transition from periodic oscillations over the suction surface to quasi-periodic motions, whereby the shock is propelled forward into the oncoming flow during its upstream excursion.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지