본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Trends in plant science 11건

  1. [해외논문]   Editorial Board and Contents   SCI SCIE


    Trends in plant science v.22 no.2 ,pp. i - i , 2017 , 1360-1385 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Redox Tuning in Photosystem II   SCI SCIE

    Allen, John F. (Research Department of Genetics, Evolution, and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK ) , Nield, Jon (School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK)
    Trends in plant science v.22 no.2 ,pp. 97 - 99 , 2017 , 1360-1385 ,

    초록

    In photosynthesis, oxygen is liberated from water, not from CO 2 ; however, this model has been silent on why photosynthesis requires bicarbonate. Rutherford and colleagues solve this problem elegantly: bicarbonate tunes water-oxidising photosystem II to make onward electron transfer efficient; an absence of bicarbonate retunes, redirects, and safely shuts down energy flow.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   The First Darwinian Phylogenetic Tree of Plants   SCI SCIE

    Hoßfeld, Uwe (Arbeitsgruppe Biologiedidaktik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ) , Watts, Elizabeth (Arbeitsgruppe Biologiedidaktik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ) , Levit, Georgy S. (Arbeitsgruppe Biologiedidaktik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany)
    Trends in plant science v.22 no.2 ,pp. 99 - 102 , 2017 , 1360-1385 ,

    초록

    In 1866, the German zoologist Ernst Haeckel (1834–1919) published the first Darwinian trees of life in the history of biology in his book General Morphology of Organisms . We take a specific look at the first phylogenetic trees for the plant kingdom that Haeckel created as part of this two-volume work.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Modification of DNA Checkpoints to Confer Aluminum Tolerance   SCI SCIE

    Eekhout, Thomas (Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Gent, Belgium ) , Larsen, Paul (Department of Biochemistry, University of Riverside, CA 92521, USA ) , De Veylder, Lieven (Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Gent, Belgium)
    Trends in plant science v.22 no.2 ,pp. 102 - 105 , 2017 , 1360-1385 ,

    초록

    Although aluminum (Al) toxicity represents a global agricultural problem, the biochemical targets for Al remain elusive. Recently identified Arabidopsis mutants with increased Al tolerance provide evidence of DNA as one of the main targets of Al. This insight could lead the way for novel strategies to generate Al-tolerant crop plants.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Seed Coating: Science or Marketing Spin?   SCI SCIE

    Pedrini, Simone (Department of Environment and Agriculture, Curtin University, Kent Street, Bentley, WA 6102, Australia ) , Merritt, David J. (Kings Park and Botanic Garden, Fraser Avenue, Kings Park, WA 6005, Australia ) , Stevens, Jason (Kings Park and Botanic Garden, Fraser Avenue, Kings Park, WA 6005, Australia ) , Dixon, Kingsley (Department of Environment and Agriculture, Curtin University, Kent Street, Bentley, WA 6102, Australia)
    Trends in plant science v.22 no.2 ,pp. 106 - 116 , 2017 , 1360-1385 ,

    초록

    Seed coating is the practice of covering seeds with external materials to improve handling, protection, and, to a lesser extent, germination enhancement and plant establishment. With an annual value exceeding US$1 billion dollars, this technology is mostly the preserve of the private research sector, with few links to the scientific community. Here, we analyse the science and industry of seed coating and its contribution to seed establishment and plant performance. We posit that a closer collaboration between academia and industry is critical to realising the potential of seed coating both as a tool for enhancing plant establishment in the face of the challenges posed to agricultural systems and to propel the multibillion-dollar global push for ecological restoration of degraded ecosystems. Trends Artificial coating of seed is used to improve handling and for the delivery of protectants, symbiotic microorganisms, micronutrients, soil adjuvants, germination promoters, growth regulators, and colours. The private sector owns and controls most of the technology, with the bulk of the expertise and capacity residing in a few multinational companies that have limited research connection with academia. The research effort of industry is focussed on protective treatments (e.g., insecticides and pesticides), seed bulking, and embellishment for marketing purposes. The deployment of phytoactive promoters is rarely reported. Seed coatings are mostly applied to crop and vegetable varieties. Despite the global push for ecological restoration, the scientific community rarely considers seed technologies for use on native species and there is no recorded interest from the corporate sector in restoration.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Overcoming the Law of the Hidden in Cyberinfrastructures   SCI SCIE

    Bucksch, Alexander (Department of Plant Biology, University of Georgia, Athens, GA 30602, USA ) , Das, Abhiram (School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA ) , Schneider, Hannah (Department of Plant Science, Pennsylvania State University, State College, PA 16802, USA ) , Merchant, Nirav (Biotechnology Computing Facility, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA ) , Weitz, Joshua S. (School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA)
    Trends in plant science v.22 no.2 ,pp. 117 - 123 , 2017 , 1360-1385 ,

    초록

    Cyberinfrastructure projects (CIPs) are complex, integrated systems that require interaction and organization amongst user, developer, hardware, technical infrastructure, and funding resources. Nevertheless, CIP usability, functionality, and growth do not scale with the sum of these resources. Instead, growth and efficient usage of CIPs require access to ‘hidden’ resources. These include technical resources within CIPs as well as social and functional interactions among stakeholders. We identify approaches to overcome resource limitations following the conceptual basis of Liebig's Law of the Minimum. In so doing, we recommend practical steps towards efficient and scaleable resource use, taking the iPlant/CyVerse CIP as an example. Trends Recent investment in cyberinfrastructure has yielded large-scale platforms that transform computational innovations into useable software for the plant science community. However, only a small fraction of community-developed algorithms and tools have been ported to these platforms. Training in the life sciences and plant sciences in particular tends to require specialized training that is complementary to that of software developers and architects of cyberinfrastructure projects. This leads to significant gaps in expectation and in communication. Recent investment in the profile of ‘research software engineers’ presents an opportunity to support and democratize algorithms and tools. In addition, the growth of sustainable support communities can be used as an example of how to grow an algorithm into a community-deployed software that benefits the plant science community as a whole.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Molecular Evolution of Grass Stomata   SCI SCIE

    Chen, Zhong-Hua (College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China ) , Chen, Guang (College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China ) , Dai, Fei (College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China ) , Wang, Yizhou (Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom ) , Hills, Adrian (Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom ) , Ruan, Yong-Ling (School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia ) , Zhang, Guoping (College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China ) , Franks, Peter J. (Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia ) , Nevo, Eviatar (Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel ) , Blatt, Michael R. (Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom)
    Trends in plant science v.22 no.2 ,pp. 124 - 139 , 2017 , 1360-1385 ,

    초록

    Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Trends Evolutionary trajectories of land plants have led to structurally complex and functionally active stomata for terrestrial life. A likely scenario for the emergence of active stomatal control is ‘evolutionary capture’ of key stomatal development, membrane transport, and abscisic acid signaling proteins in the divergence from liverworts to mosses. The unique morphology, development, and molecular regulation of grass stomata enable their rapid environmental response. Evolution of the molecular mechanism behind stomatal development and membrane transport has clearly drawn on conserved and sophisticated signaling networks common to stomata of all vascular plants and some mosses. Understanding this evolutionary trend will inform predictive modeling and functional manipulation of plant productivity and water use at all scales, and will benefit future efforts towards food security and ecological diversity.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Learning To Breathe: Developmental Phase Transitions in Oxygen Status   SCI SCIE

    Considine, Michael J. (The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia ) , Diaz-Vivancos, Pedro (Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)–Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain ) , Kerchev, Pavel (Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium ) , Signorelli, Santiago (School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia ) , Agudelo-Romero, Patricia (Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia ) , Gibbs, Daniel J. (School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK ) , Foyer, Christine H. (The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia)
    Trends in plant science v.22 no.2 ,pp. 140 - 153 , 2017 , 1360-1385 ,

    초록

    Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide ( • NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, • NO-, and redox-dependent signalling curate developmental transitions in plants. Trends Plant responses to a change in the availability of oxygen under stress conditions are widely understood. Recent research also provides important developmental contexts for oxygen status. Gradients of oxygen and related cues appear to converge upon hypoxic niches surrounding vital cells, such as root quiescent centre cells and male germ line cells. The regulation of oxygen status is mechanistically related to seed germination, the skoto-photomorphogenic transition, and meiosis. Within each context, ROS and RNS, whose levels are directly linked to oxygen status, appear to be paramount in determining cell fate, but knowledge of the nexus of interactions that determine cell identity and fate remains elusive.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   AVP1: One Protein, Many Roles   SCI SCIE

    Schilling, Rhiannon K. (School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia ) , Tester, Mark (Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia ) , Marschner, Petra (School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia ) , Plett, Darren C. (School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia ) , Roy, Stuart J. (School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia)
    Trends in plant science v.22 no.2 ,pp. 154 - 162 , 2017 , 1360-1385 ,

    초록

    Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H + -PPase) gene ( AVP1 ) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1 . It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles. Trends The type I H + -PPase in Arabidopsis thaliana (AVP1) regulates both vacuolar acidification and cytosolic pyrophosphate (PP i ) concentrations. Expression of AVP1 increases the growth and yield of many transgenic plants under various abiotic stresses, including drought, salinity, and low phosphorus (P) and nitrogen (N) supply. Transgenic plants expressing AVP1 also have enhanced shoot and root biomass in nonstressed conditions. Various mechanisms have been proposed to explain the larger size of transgenic plants expressing AVP1 , including increased vacuolar ion sequestration, improved auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis   SCI SCIE

    Chamizo-Ampudia, Alejandro (Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain ) , Sanz-Luque, Emanuel (Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain ) , Llamas, Angel (Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain ) , Galvan, Aurora (Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain ) , Fernandez, Emilio (Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain)
    Trends in plant science v.22 no.2 ,pp. 163 - 174 , 2017 , 1360-1385 ,

    초록

    Nitrate reductase (NR) is a key enzyme for nitrogen acquisition by plants, algae, yeasts, and fungi. Nitrate, its main substrate, is required for signaling and is widely distributed in diverse tissues in plants. In addition, NR has been proposed as an important enzymatic source of nitric oxide (NO). Recently, NR has been shown to play a role in NO homeostasis by supplying electrons from NAD(P)H through its diaphorase/dehydrogenase domain both to a truncated hemoglobin THB1, which scavenges NO by its dioxygenase activity, and to the molybdoenzyme NO-forming nitrite reductase (NOFNiR) that is responsible for NO synthesis from nitrite. We review how NR may play a central role in plant biology by controlling the amounts of NO, a key signaling molecule in plant cells. Trends NO synthesis remains a complex picture with many unresolved questions. NR has been assumed to be the main enzymatic source, but a new and more complex picture for the mechanism of NO synthesis is emerging. NR, the first enzyme for nitrate assimilation, is a multi-redox protein able to mediate the donation of electrons from NAD(P)H to artificial acceptors and redox proteins. In Chlamydomonas , two of these redox partners are NOFNiR, which efficiently synthesizes NO, and THB1, a truncated hemoglobin, which eliminates NO by its dioxygenase activity. Homeostasis of the crucial signaling molecule NO in photosynthetic organisms depends on at least two key molybdoenzymes, NR and NOFNiR, as well as on the dioxygenase activity of hemoglobins.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지