본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Wind & structures 5건

  1. [국내논문]   Unifying calculation of vortex-induced vibrations of overhead conductors  

    Leblond, Andre (Hydro-Quebec TransEnergie ) , Hardy, Claude (Claude Hardy International Inc.)
    Wind & structures v.8 no.2 ,pp. 79 - 88 , 2005 , 1226-6116 ,

    초록

    This paper deals with a unified way for calculating vortex-induced vibrations (Aeolian vibrations in transmission line parlance) of undamped single overhead conductors. The main objective of the paper is to identify reduced parameters which would unify the predicted vibration response to the largest possible extent. This is actually done by means of a simple mathematical transformation resulting, for a given terrain (associated to a given wind turbulence intensity), into a single, unified response curve that is applicable to any single multi-layered aluminium conductor. In order to further validate the above process, the predicted, unified response curve is compared with measured response curves drawn from tests run on a full-scale test line using several aluminium-conductor-steel-reinforced (ACSR), all-alloy-aluminium-conductor (AAAC) and aluminium-conductor-alloy-reinforced (ACAR) conductors strung at different tensions. On account of the expected scatter in the results from such field tests, the agreement is shown to be good. The final results are expressed by means of only four different curves pertaining to four different terrain characteristics. These curves may then be used to assess the vibration response of any undamped single, multi-layer aluminium conductor of any diameter, strung at any practical tension.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [국내논문]   Wind induced vibrations of long electrical overhead transmission line spans: a modified approach  

    Verma, Himanshu (Institut fur Mechanik, Technische Universitat Darmstadt ) , Hagedorn, Peter (Institut fur Mechanik, Technische Universitat Darmstadt)
    Wind & structures v.8 no.2 ,pp. 89 - 106 , 2005 , 1226-6116 ,

    초록

    For estimating the vortex excited vibrations of overhead transmission lines, the Energy Balance Principle (EBP) is well established for spans damped near the ends. Although it involves radical simplifications, the method is known to give useful estimates of the maximum vibration levels. For very long spans, there often is the need for a large number of in-span fittings, such as in-span Stockbridge dampers, aircraft warning spheres etc. This adds complexity to the problem and makes the energy balance principle in its original form unsuitable. In this paper, a modified version of EBP is described taking into account in-span damping and in particular also aircraft warning spheres. In the first step the complex transcendental eigenvalue problem is solved for the conductor with in-span fittings. With the thus determined complex eigenvalues and eigenfunctions a modified energy balance principle is then used for scaling the amplitudes of vibrations at each resonance frequency. Bending strains are then estimated at the critical points of the conductor. The approach has been used by the authors for studying the influence of in-span Stockbridge dampers and aircraft warning spheres; and for optimizing their positions in the span. The modeling of the aircraft warning sphere is also described in some detail.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [국내논문]   Steady wind force coefficients of inclined stay cables with water rivulet and their application to aerodynamics  

    Matsumoto, Masaru (Department of Civil and Earth Resources Engineering, Kyoto University, Advanced Research Institute of Fluids Science and Engineering, Int' tech Center, Kyoto University ) , Yagi, Tomomi (Department of Civil and Earth Resources Engineering, Kyoto University, Advanced Research Institute of Fluids Science and Engineering, Int' tech Center, Kyoto University ) , Sakai, Seiichiro (Department of Civil and Earth Resources Engineering, Kyoto University, Advanced Research Institute of Fluids Science and Engineering, Int' tech Center, Kyoto University ) , Ohya, Jun (Department of Civil and Earth Resources Engineering, Kyoto University, Advanced Research Institute of Fluids Science and Engineering, Int' tech Center, Kyoto University ) , Okada, Takao (Department of Civil and Earth Resources Engineering, Kyoto University, Advanced Research Institute of Fluids Science and Engineering, Int' tech Center, Kyoto University)
    Wind & structures v.8 no.2 ,pp. 107 - 120 , 2005 , 1226-6116 ,

    초록

    The quasi-steady approaches to simulate the wind induced vibrations of inclined cables, especially on the rain-wind induced vibration, have been tried by many researchers. However, the steady wind force coefficients used in those methods include only the effects of water rivulet, but not the axial flow effects. The problem is the direct application of the conventional techniques to the inclined cable aerodynamics. Therefore, in this study, the method to implement the axial flow effects in the quasi-steady theory is considered and its applicability to the inclined cable aerodynamics is investigated. Then, it becomes clear that the perforated splitter plate in the wake of non-yawed circular cylinder can include the effects of axial flow in the steady wind force coefficients for inclined cables to a certain extent. Using the lateral force coefficients measured in this study, the quasi-steady theory may explain the wind induced instabilities of the inclined cables only in the relatively high reduced wind velocity region. When the Scruton number is less than around 40, the high speed vortex-induced vibration occurs around the onset wind velocity region of the galloping, and then, the quasi-steady approach cannot be applied for estimating the response of wind-induced vibration of inclined cable.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [국내논문]   Characterization of wind-induced vibrations in transmission lines by single-channel field data analysis  

    Yamaguchi, Hiroki (Department of Civil and Environmental Engineering, Saitama University ) , Gurung, Chandra B. (Department of Civil and Environmental Engineering, Saitama University ) , Yukino, Teruhiro (Technical Research Center, Kansai Electric Power Co.)
    Wind & structures v.8 no.2 ,pp. 121 - 134 , 2005 , 1226-6116 ,

    초록

    Wind-induced vibrations measured in the Tsuruga Test Line are characterized in this paper by single-channel data analysis based on piecewise application of Prony's method. Some of events were identified as galloping, while most of events were buffeting responses, which were confirmed partly by the buffeting analysis. Effects of end condition etc. on the response characteristics are also discussed.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [국내논문]   Correlation of aerodynamic forces on an inclined circular cylinder  

    Cheng, Shaohong (Department of Civil Engineering, University of Ottawa ) , Tanaka, Hiroshi (Department of Civil Engineering, University of Ottawa)
    Wind & structures v.8 no.2 ,pp. 135 - 146 , 2005 , 1226-6116 ,

    초록

    Divergent galloping-like motion of a dry inclined cable has been observed in a limited number of experimental studies, which, due to the uncertainties in its onset conditions, has induced serious concerns in the bridge stay cable design. A series of dynamic and static model wind tunnel tests have been carried out to confirm the existence of the phenomenon and clarify its excitation mechanism. The present paper focuses on exploring the spatial flow structure around an inclined cable. The pattern of resultant aerodynamic forces acting at different longitudinal locations of the model and the spatial correlation of the forces are examined. The results lead one step closer in revealing the physical nature of the phenomenon.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지