본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Horticulture, Environment, and Biotechnology 15건

  1. [국내논문]   Improvement of seed dehiscence and germination in ginseng by stratification, gibberellin, and/or kinetin treatments   SCIE KCI

    Lee, Jung-Woo , Jo, Ick-Hyun , Kim, Jang-Uk , Hong, Chi-Eun , Kim, Young-Chang , Kim, Dong-Hwi , Park, Young-Doo
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 293 - 301 , 2018 , 2211-3452 ,

    초록

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [국내논문]   Control of relative humidity and root-zone water content for acclimation of in vitro-propagated M9 apple rootstock plantlets   SCIE KCI

    Ko, Sang-Min , Lee, Jin-Hui , Oh, Myung-Min
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 303 - 313 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [국내논문]   Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato   SCIE KCI

    Pantelić , , Danijel , Dragić , ević , , Ivana Č , . , Rudić , , Jelena , Fu, Jianming , Momč , ilović , , Ivana
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 315 - 324 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [국내논문]   The effects of 24-epibrassinolide corm priming and foliar spray on morphological, biochemical, and postharvest traits of sword lily   SCIE KCI

    Mollaei, Samaneh , Farahmand, Homayoun , Tavassolian, Iraj
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 325 - 333 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [국내논문]   Effect of germination and water absorption on scarification and stratification of kousa dogwood seed   SCIE KCI

    Cho, Ju Sung , Lee, Cheol Hee
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 335 - 344 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [국내논문]   Effects of biochar mixtures with pine-bark based substrates on growth and development of horticultural crops   SCIE KCI

    Choi, Hyun-Sug , Zhao, Yan , Dou, Haijie , Cai, Xiaoya , Gu, Mengmeng , Yu, Fei
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 345 - 354 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [국내논문]   Different vegetative growth stages of Kimchi cabbage (Brassica rapa L.) exhibit specific glucosinolate composition and content   SCIE KCI

    Jeon, Byeong Wook , Oh, Man-Ho , Kim, Eun Ok , Kim, Hyoung Seok , Chae, Won Byoung
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 355 - 362 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [국내논문]   Comparison of the activities of photosystem II of four table grapevine cultivars during high-temperature stress   SCIE KCI

    Zha, Qian , Xi, Xiaojun , Jiang, Aili , Tian, Yihua
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 363 - 371 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [국내논문]   Postharvest quality maintenance and bioactive compounds enhancement in 'Taaptimjaan' wax apple during short-term storage by salicylic acid immersion   SCIE KCI

    Supapvanich, Suriyan , Mitsang, Preyanuch , Youryon, Pannipa , Techavuthiporn, Chairat , Boonyaritthongchai, Panida , Tepsorn, Racha
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 373 - 381 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [국내논문]   Comparative transcriptome analysis by RNA-Seq of the regulation of low temperature responses in Dendranthema morifolium   SCIE KCI

    Lu, Jiuxing , Bi, Huitao , Zhang, Aohua , Guo, Tong , Li, Yong , Li, Yonghua
    Horticulture, Environment, and Biotechnology v.59 no.3 ,pp. 383 - 395 , 2018 , 2211-3452 ,

    초록

    The present study aimed to evaluate the effects of controlling the relative humidity (RH) and water content of the root-zone on the survival rate and growth of in vitro-propagated virus-free M9 apple plantlets in closed-type plant production systems. In the first experiment, three RH regimes were applied to pre-acclimated (PA) and non-PA apple plantlets for 6 weeks after transplantation. In the second experiment, the apple plantlets were transplanted into several growth media, including a mixture of peat moss and perlite (PP), rock wool (RW), and urethane sponge (SP), and in a deep flow technique (DFT) system for controlled root zone water content under controlled RH. In the first experiment, pre-acclimation improved the survival rate by preventing the loss of leaf water potential and promoting antioxidant capacity during the acclimation period. However, no clear difference was found among the three RH regimes. The antioxidant capacity was increased at 2 weeks after transplantation, followed by root initiation. The leaf water potential, which decreased continuously until 3 weeks after transplanting, tended to remain constant after root initiation. These results suggested that pre-acclimation is necessary for the survival of in vitro-propagated apple plantlets, and that the underdeveloped roots of apple plantlets have restricted water absorption under controlled RH. In the second experiment, the survival rate of plantlets grown in PP at 6 weeks after transplantation was only 70% accompanied by an increase in antioxidant capacity, whereas the survival rates of plantlets grown in RW, SP, DFT, and DFT-PP (replanted to PP from DFT 4 weeks after transplantation) were 98, 96, 93.8, and 93.8%, respectively. Most of the growth parameters of the plantlets grown in DFT were the highest among the growth media at 6 weeks after transplantation. The results of the second experiment implied that the application of DFT for in vitro-propagated apple plantlets can reduce the problems caused by poor root architecture during acclimation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지