본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

한국수학교육학회지. 시리즈 A: 수학교육 8건

  1. [국내논문]   고등학교 학생의 수학 성취 수준에 따른 수학 기피요인 분석 연구  

    차인숙 (한양대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 251 - 262 , 2006 , 1225-1380 ,

    초록

    This study investigates 628 high school students' math dislike tendencies by their math achievement levels. The findings show that, firstly, as the sample students' math achievement level decreases, the number of dislike factors increase. Secondly, students' math dislike factors are differentiated by their math achievement levels. Math high achievers show high math disliking tendency by teacher factor. Middle achievers show high math disliking tendency by complex application and relation factors. Low achievers show high math disliking tendency by comprehension factor. Finally the math disliking factors affecting the level of math achievement are influenced by schools and grades that students' attend. While math disliking factors such as comprehension factor, teacher factor, affection factor are generally present among sample schools, exceptionally JS high school students(high achieving students) are only affected by mentality factor. In addition, mentality factor affects the second grade students only. The implications of the study argue that students' math disliking tendencies could be systematically reduced by paying attention to such dependent variables students' achievement levels, grade, school characteristics, and independent variables including teacher, application, mentality, comprehension, and affection.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [국내논문]   직관의 즉각성 요인과 효과에 대한 고찰   피인용횟수: 2

    이대현 (광주교육대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 263 - 273 , 2006 , 1225-1380 ,

    초록

    The purpose of this paper is to research the factors and the effects of immediacy in mathematics teaching and learning and mathematical problem solving. The factors of immediacy are visualization, functional fixedness and representatives. In special, students can apprehend immediately the clues and solution using the visual representation because of its properties of finiteness and concreteness. But the errors sometimes originate from visual representation which come from limitation of the visual representation. It suggests that students have to know conceptual meaning of the visual representation when they use the visual representation. And this phenomenon is the same in functional fixedness and representatives which are the factors of immediacy The methods which overcome the errors of immediacy is that problem solvers notice the limitation of the factors of immediacy and develop the meta-cognitive ability. And it means we have to emphasize the logic and the intuition in mathematical teaching and learning. Clearly, we can't solve all mathematical problems using only either the logic or the intuition.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [국내논문]   초등학교 6학년 학생들의 소수 계산 오류와 선행지식 간의 연결 관계 분석 및 지도방안 탐색   피인용횟수: 2

    방정숙 (한국교원대학교 ) , 김재화 (과천관문초등학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 275 - 293 , 2006 , 1225-1380 ,

    초록

    The purpose of this study was to analyze the connection between students' errors and prior knowledge as an attempt to design an efficient teaching method in decimal computation. A survey on decimal computations was conducted in two 6th grade elementary school classrooms. Error patterns on decimal computations were analyzed and clinical interviews were conducted with 8 students according to their error patterns. Main errors resulted from the insufficient understanding of prior knowledge such as place value, connection between decimals and fractions, meaning of operations, and computation principles of fractions. In order to help students overcome such obstacles, a teaching experiment was designed in a manner that strengthens a profound understanding of prior knowledge related to decimal computations, and connects such knowledge to actual decimal calculations. This study showed that well-designed lesson plans with base-ten blocks might decrease students' errors by helping them understand decimals and connect their prior knowledge to decimal operations.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [국내논문]   대학생 교사제의 효과 분석: 사범대학 수학교사교육 프로그램 개발을 위한 제언   피인용횟수: 1

    주미경 (신라대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 295 - 313 , 2006 , 1225-1380 ,

    초록

    University teacher education programs have sought for ways of how to improve student teaching in order to supply mathematics teachers with practical theory to achieve the goals of the current educational reform in school mathematics. In this context, the purpose of this research is to investigate the effect of student teachers' teaching experience in the after-school mathematics programs and the ways of how to develop the after-school learning programs as an effective site for learning to teach based on the inquiry into student teachers' own teaching experience. For the purpose, data were collected through the interviews with the student teachers who had taught after-school mathematics class. In addition, data were collected through survey, class observation, and seminal meetings with the student teachers in order to supplement the findings from the interview analysis. Data analysis focused on the student teachers' experience with teaching in after-school mathematics classes, that is, what and how they had learned as teachers, what kinds of difficulties they encountered in their teaching and supports that they expect to improve their learning through teaching. The analysis shows that the teaching experience in the after-school programs had positively contributed to their development as future mathematics teachers. Specifically, the after-school programs provide the site for learning through teaching at the early stage of teacher education program. The after-school programs provided the students teachers for the opportunity to participate peripherally in educational practice of school. Through the participation, the student teachers developed positive attitudes toward teaching career and became to have more solid ideas about how to teach mathematics. Based on the analysis, this research provides following suggestions concerning how to improve student teaching. First, it is necessary to provide student teachers to participate into the practice of teaching at the early stage of teacher education programs. Second, it is important to give students teacher opportunity to participate in teaching at peripheral and legitimate positions. Finally, it is necessary to construct mentoring networks to support student teachers to move from a peripheral position toward a center of teaching practice.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [국내논문]   제곱합과 교차곱합의 특성을 이용한 표본분산과 상관계수의 계산  

    조태경 (동국대학교 ) , 신미영 (가톨릭대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 315 - 318 , 2006 , 1225-1380 ,

    초록

    In this paper we present the simple updating formulas for a sum of product and a sum of cross product when a new value is added on or a specific value is eliminated from the original data. The sample variance and correlation for the new data set are derived by new computing formulas. Any statistic which is a function of the sum of product and a sum of cross product also can be updated by proposed method even though the original data is not available.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [국내논문]   5, 6학년 학생들의 대표값에 대한 비형식적 개념 분석  

    이춘재 (천안일봉초등학교 ) , 전평국 (한국교원대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 319 - 343 , 2006 , 1225-1380 ,

    초록

    The purpose of this study is to investigate how fifth and sixth graders recognize average and to find out suggestions for teaching/learning methods of average by examining which difference there is depending on the way of the word problem presentation. For the this purpose, was conducted experiment study with the way of the world problem presentation set up as experimental treatment. The conclusions drawn from the results obtained in the this study were as follows : First, since students who did not learn the regular course of average had various informal concepts already, it is needed to consider handling more various concepts of average in order to enable students to expand flexible thoughts. Second, compared with fifth and sixth graders showed a wide difference in informal concepts of average depending on the way of the word problem presentation. In expect data with given average, concepts of mean as algorithm, balance point, and mode indicated similar percentage, while in estimate average with given data, the percentage of students who showed the concept of mean was very high at 67.6%. That may be because problems related to mean in the current textbooks are items of 'estimate average with given data', so in types of 'estimate average with given data', students solve questions with mean as algorithm without considering situations of problems. This result suggests that it is necessary to diversify the way of the word problem presentation even in textbooks. Third, as a result of analyzing informal concepts of average, there was significant difference in grades. In addition, the results suggested that there would be difference in the concepts of average depending on gender or attributes of discrete quantity and continuous quantity.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [국내논문]   수학화 경험 수업에서 나타난 초등학생의 수학적 능력 및 수학화 분석   피인용횟수: 4

    김윤진 (서울돈암초등학교 ) , 김민경 (이화여자대학교)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 345 - 365 , 2006 , 1225-1380 ,

    초록

    This study, to effectively teach the concepts, principles and problem solving ability of the 2nd graders' learning of numbers and operations, offers realistic problem situation and focuses on the learning based on 'mathematization', one of the most important principles of RME (Realistic Mathematics Education) which is the mathematics education trend of Netherlands influenced by Freudenthal's theory. The instruction is applied to forty-one students of the 2nd grader for six weeks in twelve series in an elementary school, located in Seoul. To investigate the effects of the mathematising experience instruction for improving mathematical abilities, the group takes tests before and after the instruction. Also the qualitative analysis on the students' mathematising aspects through students' output at the instruction process is taken into account to evaluate the instruction's effects. The result shows that the mathematising experience instruction for improving mathematical abilities is proved to improve students' understanding of mathematical concepts and principles and their problem solving ability in learning numbers and operations after carrying out this instruction. Also the result indicates that students' mathematising aspects are mostly horizontal and vertical mathematization.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [국내논문]   유클리드 기하의 고유한 성질로서의 삼각형 넓이 공식에 대한 재음미   피인용횟수: 2

    최영기 (서울대학교 ) , 홍갑주 (서울대학교 대학원)
    한국수학교육학회지. 시리즈 A: 수학교육 v.45 no.3 = no.114 ,pp. 367 - 373 , 2006 , 1225-1380 ,

    초록

    This study suggests that it is necessary to prove that the values of three areas of a triangle, which are obtained by the multiplication of the respective base and its corresponding height, are the same. It also seeks to deeply understand the meaning of Area formula of triangles by exploring some questions raised in the analysis of the proof. Area formula of triangles expresses the invariance of congruence and additivity on one hand, and the uniqueness of parallel line, one of the characteristics of Euclidean geometry, on the other. This discussion can be applied to introducing and developing exploratory learning on area in that it revisits the ordinary thinking on area.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지