본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Modern applied science 34건

  1. [해외논문]   Pretreatment of Marasmius sp. on Biopulping of Oil Palm Empty Fruit Bunches  

    Risdianto, Hendro , Sugesty, Susi
    Modern applied science v.9 no.7 ,pp. 1 , 2015 , 1913-1844 ,

    초록

    White rot fungi have an ability to degrade lignin by employing lignin-degrading enzymes i.e Lignin Peroxidase, Manganese Peroxidase and Laccase. Therefore, the fungi can be utilized on the pretreatment of biomass in pulp making (biopulping) and biobleaching. In this study, the pretreatment using White Rot Fungi of Marasmius sp. has been conducted on the the Oil Palm Empty Fruit Bunches (EFBs). Marasmius sp. has been grown on EFBs for 30 days. The results showed that the lignin content could be removed by 35.94%. However, cellulose and hemicelluloses relatively did not show any changes in the EFBs. From the pulping process, the pretreatment exhibited the Kappa Number of 31.10. Compared to no pretreatment of white rot fungi, the Kappa Number obtained was 38.63. This result demonstrated a promising process for a green pulp making.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Food Grade Ethanol Production Process of Sorghum Stem Juice Using Immobilized Cells Technique  

    Widjaja, Tri , Altway, Ali , Widjaja, Arief , Rofiqah, Umi , Erlian, Rr Whiny Hardiyati
    Modern applied science v.9 no.7 ,pp. 8 , 2015 , 1913-1844 ,

    초록

    One form of economic development efforts for waste utilization in rural communities is to utilize stem sorghum to produce food grade ethanol. Sorghum stem juice with 150 g/L of sugar concentration was fermented using conventional batch process and cell immobilization continuous process with K-carrageenan as a supporting matrix. The microorganism used was Mutated Zymomonas Mobilis to be compared with a mixture of Saccharomyces Cerevisiae and Pichia Stipitis, and a mixture of Mutated Zymomonas Mobilis and Pichia Stipitis. Ethanol in the broth, result of fermentation process, was separated in packed distillation column. Distilate of the column, still contain water and other impurities, was flown into molecular sieve for dehydration and activated carbon adsorption column to remove the other impurities to meet food grade ethanol specification. The packing used in distillation process was steel wool. For batch fermentation, the fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis produced the best ethanol with 12.07% of concentration, where the yield and the productivity were 63.49%, and 1.06 g/L.h, respectively. And for continuous fermentation, the best ethanol with 9.02% of concentration, where the yield and the productivity were 47.42% and 174.27 g/L.h, respectively, is obtained from fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis also. Fermentation using combination microorganism of Saccharomyces Cerevisiae and Pichia Stipitis produced higher concentration of ethanol, yield, and productivity than other microorganisms. Distillation, molecular sieve dehydration and adsorption process is quite successful in generating sufficient levels of ethanol with relatively low amount of impurities.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Study of Pretreatment and Enzymatic Hydrolysis on Microcrystalline Cellulose and HVS A4 Paper in Pressurized CO2 Media  

    Pramudita, Ian Eka , Noviana, Marcella Lauditta , Muljana, Henky
    Modern applied science v.9 no.7 ,pp. 16 , 2015 , 1913-1844 ,

    초록

    The aim of this work is to investigate the potential used of pressurized CO2 in the pre-treatment and the enzymatic hydrolysis of waste HVS A4 paperto produce a monomeric sugars (C5 and C6 sugars) which is a precursor for bioethanol production. Prior to the utilization of waste HVS A4 paper, the microcrystalline cellulose and HVS A4 paper were first used in the experiments as model compound in order to gain better insights of the process. The experiment consists of two main parts which are the preliminary experimentsto determine the best pretreatment conditionsbetween two selected pressure values (80 and 100 bar) at a fixed temperature (T = 75 oC) and the enzymatic hydrolysis experiments. In the latter, the microcrystalline and HVS A4 paper were hydrolyzed at different pressures (100 bar, 125 bar, and 150 bar) and at different cellulase intakes (1% (v/v), 3% (v/v), and 5% (v/v)) with a fixed temperature (50°C). The hydrolyzed products were analyzed with a High Performance Liquid Chromatography (HPLC) to quantify the monomeric sugars and to determine the presence of the side products (furfural, HMF and levulinic acid). Within the experimental range, a maximum glucose concentration of 7602.35 ppm and 4560.79 ppm are obtained for microcrystalline and HVS A4 paper, respectively. In addition, there are no furfural, HMF and levulinic acid detected in the products This study shows a potential used of pressurized CO2 in the pretreatment and enzymatic hydrolysis of the model compound and gives a better insight for further application.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Lignocellulosic Processing with Acid Pretreatment and Enzymatic Hydrolysis for Improving the Acquisition of Sugar Fermentation  

    Hendrianie, Nuniek , Juliastuti, Sri Rahmania , Iwani, Moch. Izati , Eka, Affrida
    Modern applied science v.9 no.7 ,pp. 24 , 2015 , 1913-1844 ,

    초록

    Banana peels is a waste which has not been widely used, so that the relatively long time the existence of such waste brings its own problems such as pollution. Banana peels contain high enough lignocellulosic and can be degraded into simpler forms. The Lignin content of banana peels needs to be removed / destroyed structure. The purpose of this study was to determine the effect of the addition ratio of Trichoderma reseei and Aspergillus niger on hydrolysis liquefaction and saccharification time in stage hydrolysis to glucose produced with the highest glucose parameters. In this study, the method was used to degrade lignin by using sulfuric acid (2%). Afterward, the cellulose content was changed in liquefaction process. Hydrolysis liquefaction performed using Aspergillus niger and Trichoderma reesei with a mixture ratio of 1: 0, 0: 1, 1: 1 and 1: 2. Furthermore, substrate hydrolysis liquefaction saccharification going through the process of hydrolysis to increase glucose levels were formed. Hydrolysis liquefaction aims to change the content of starch in the banana skin into glucose using Saccharomyces cerevisiae as the addition of 20% (v / v). Hydrolysis process of liquefaction is done by varying the sampling time on day - 3, 6, and 9. In this study the hydrolysis of liquefaction of banana peels use a mixture of Trichoderma reesei and Aspergillus niger 2:1 at a temperature of 50oC, pH 5, and 64 h for resulted in glucose with the best content was 0.52%. In addition, the results showed that the hydrolysis saccharification with the addition of Saccharomyces cerevisiae glucose levels were highest on day 3 with a temperature of 30oC and pH 5, resulting in glucose content to 1.63%.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Michaelis-Menten Kinetic Parameters of Coconut Coir Enzymatic Hydrolysis  

    Fatmawati, Akbarningrum , Agustriyanto, Rudy
    Modern applied science v.9 no.7 ,pp. 30 , 2015 , 1913-1844 ,

    초록

    The limitation of fossil oil reserves and environmental pollution has been current problems that need to be solved. Biofuels such as ethanol can be alternative energy source that can reduce demand on fossil fuel and environmental problem. Food wastes such as coconut coirs are abundant and contain carbohydrate which can be used as the substrate for biofuel production. Pretreatment and hydrolysis are important stages which have to be applied on such lignocellulose materials before fermentation process to produce biofuel. This article presents Michaelis-Menten kinetic parameters for coconut coir enzymatic hydrolysis. Coconut coirs collected from several local markets in Surabaya were subjected to alkaline pretreatment using 11% sodium hydroxide solution at 121oC. Hydrolysis steps were carried out using commercial enzymes at various initial substrate concentrations. The hydrolysis conditions were at 50oC and pH 4.8. The concentrations of reducing sugar produced in the reactions were measured at certain time intervals. Initial rate of reactions of each reaction batch were then determined. Finally, kinetic parameters of Michaelis-Menten model for enzymatic reaction were determined by fitting the initial rate of reactions and initial substrate concentration data. From nonlinear fitting, the maximum reaction rate (Vm) is 4.9´104 1/h and the value of KM is 4,195 mg/L.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   The Effect of Crosslinker and Pore Generated on Selective Adsorbent (Cu2+) based on Grafting of Acrylic Acid onto Cassava Starch  

    R. B. Witono, Judy , Henrietta, Henrietta , Miryanti, Y. I. P Arry
    Modern applied science v.9 no.7 ,pp. 37 , 2015 , 1913-1844 ,

    초록

    The technology development in many industries nowadays, such as electronic industry produces heavy metal wastes which may pollute our environment. The use of adsorbent as a heavy metal removal from soil and water is one of the efficient process which can be considered to be used. In addition the release of the adsorbate becomes an important way as well because usually those heavy metals still have a high value. The objective of this research is to develop adsorbent based on cassava starch. So, the release process will become easier and will not produce another waste. The adsorbent was produced through the grafting of acrylic acid onto cassava starch by using Fenton initiator. To construct a stable 3-D network, the crosslinker (CL) N,N'- methylenebisacrylamide was added. The variable observed were the amount of CL added (0.5%; 1.5%; 2.5% and 3.5%) and the treatment of generating more pores on starch copolymer. The treatments on starch copolymer observed were single freezing, second freezing, and citric acid modification and carbonization methods. Analysis performed on the adsorbent was % add-on, water absorption and metal adsorption (especially Cu2+ ion) capacity. The result showed that the used of 2.5% CL produced the highest add-on (47.66 %), the highest water absorption capacity and the highest metal adsorption capacity (0.29g Cu2+/g adsorbent) The citric acid modification also produced the highest pores on the adsorbent.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Hydrocracking of Nyamplung Oil (Calophyllum inophyllum 0il) Using CoMo/γ-Al2O3 and CoMo/SiO2 Catalysts  

    Rasyid, Rismawati , Prihartantyo, Adrianto , Mahfud, Mahfud , Roesyadi, Achmad
    Modern applied science v.9 no.7 ,pp. 43 , 2015 , 1913-1844 ,

    초록

    The purpose of this research is to study hydrocracking process of nyamplung oil using 5% and 15% CoMo catalyst and supported on γ-Al2O3 and SiO2. Catalyst was prepared using wet impregnation method and calcined at 500oC for 5 hours without sulfidation process. The X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were performed to analyze the crystalinity and surface morphology. Based on the XRD that MoO2 was deposited on the surface of the catalysts. The hydrocracking of nyamplung (Calophyllum inophyllum) oil was conducted in Parr pressure reactor at 350oC and 3 MP. Hydrocracking product was analyzed by using Gas Cromotography – Mass Spectrometry (GCMS). The highest catalytic activity was obtained by 15% loading CoMo over γ-Al2O3 and the highest yields were 39.58% gasoil, 31.32% gasoline and 7.44% kerosene.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Development of Hybrid Fischer-Tropsch Synthesis Catalysts for Direct Production of Synthetic Gasoline from Coal-Based Syngas: An Indonesian Perspective  

    Bhuana, Donny , Zhang, Junshe , Li, Fanxing , Cooper, Matthew , Brantley, Timothy
    Modern applied science v.9 no.7 ,pp. 47 , 2015 , 1913-1844 ,

    초록

    The Fischer-Tropsch Synthesis (FTS) represents an environmentally friendly method for producing liquid fuelfrom coal-based syngas via the hydrogenation of carbon monoxide. In order for such a process to be feasible,better catalysts that are capable of enhancing the reaction performance are required. In response to these needs,new catalysts were investigated and introduced in this work. The incorporation of zeolite into the iron based FTScatalyst was expected to help refine the hydrocarbon products and shift the product distribution from the typicalFTS product range to the middle iso-paraffins, which is a gasoline range, and eventually increase the yield of theliquid fuel. This study aims to develop catalyst for producing liquid fuel, particularly gasoline, from carbonmonoxide and hydrogen. The pH of the catalysts was found to have significant effect on the catalytic activity dueto its ability to control the amount of promoter to be precipitated in the catalyst, which results in a lowerreduction temperature. Physically mixing the iron based FTS catalyst with zeolite was found to have little effecton the catalytic activity and the product distribution, apart from slightly increasing the selectivity of iso-paraffins,which is the indication of isomerization activity. Coating of zeolite onto the iron based FTS catalyst to form acore-shell structure was intended to enhance the ease of migration of the reactant and thus increasing thecatalytic activity and shifting the product distribution towards the gasoline range. While zeolite shell has beensuccessfully coated uniformly on the iron based core using hydrothermal synthesis technique, the formation ofthick zeolite shell might have blocked the active FTS sites on the iron based catalyst to some extent and isbelieved to have contributed to the low activity of the core-shell catalyst.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Comparison of the Chitosan Degradation through Hydrothermal and Sonication-Hydrothermal Processes  

    Savitri, Emma , Sumarno, Sumarno , Roesyadi, Achmad
    Modern applied science v.9 no.7 ,pp. 54 , 2015 , 1913-1844 ,

    초록

    Chitosan is a natural substance that has many applications in the fields of pharmacy and medicine. Because it hashigh molecular weight and does not dissolved easily in a neutral pH solution, then there is an effort todepolymerize chitosan into low molecular weight chitosan and oligomers. Nowdays, one of the methods used todegrade biomass is hydrothermal. Hydrotermal is one method of biomass degradation and polymers that is quiteeffective and environmentally friendly. Because chitosan has strong hydrogen bonds in addition to highmolecular weight, it is necessary to treat chitosan by sonication before subjected to hydrothermal process. Thisstudy will compare degrading chitosan by only hydrothermal process and also sonication–hydrothermalprocesses. The hydrothermal of chitosan was carried out using a stainless steel tube reactor of 4-mL capacity at200 °C for 4 s under pressures of 25 MPa for both of hydrothermal systems. For sonication– hydrothermalprocesses, chitosan was treated with sonication at 40 oC for 30 and 120 min before subjected to hydrothermalprocess. After hydrothermal, chitosan was characterized by viscosimetry and HPLC to determine molecularwight and also the dissolved product. Based on the product yield of the process, the sonication (40 °C,120 mins,1 %)-hydrothermal process (200 °C, 4 mins) was the best process on this study and gave lactose yield as much as90 %.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Optimization of Pyrolysis Operating Condition for Deriving Corn Starch Heterogeneous Acid Catalyst for Biodiesel Production  

    Santoso, Herry , Michael, Christ , Wira, Hillman , Inggrid, Maria
    Modern applied science v.9 no.7 ,pp. 61 , 2015 , 1913-1844 ,

    초록

    Biodiesel can be produced from various oils and fats. Due to possibility of diversion of edible oils from feedstocks to raw materials for biodiesel production, which may lead to food crisis, it is preferable to choosenon-edible oils as raw material for biodiesel production. As a country rich in natural resources, Indonesia has avast amount and variety of non-edible fatty-oil production plants. However, non-edible oils usually have highfree fatty acid (FFA) contents. Oils with high FFA contents cannot be converted directly to biodiesel using aconventional alkaline catalyzed process due to saponification problem. To avoid this problem, the high FFAcontents in the oils must be reduced via esterification process using acid catalyst. The use of homogeneous acidcatalyst in this process can be very corrosive and not environmentally friendly while the use of commerciallyavailable heterogeneous acid catalyst can be very expensive. In this research, a heterogeneous acid catalystsuitable for biodiesel production will be derived from corn starch through pyrolysis followed by sulphonationprocesses. The purpose of this research is to study the effects of pyrolysis temperature and time to the aciddensity of the catalyst and the activity of the catalyst in the esterification of oleic acid using a 22 factorial designwith 3 center points experimental design. It is found that the catalyst obtained from pyrolysis at 400°C for 15hours has the optimum–HSO3 content of 5.9% which corresponds to the highest average conversion of theesterification of oleic acid of 97.45%.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지