본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

IEEE transactions on neural networks and learning ... 34건

  1. [해외논문]   IEEE Computational Intelligence Society Information   SCI SCIE


    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. C3 - C3 , 2016 , 2162-237x ,

    초록

    Provides a listing of the editorial board, current staff, committee members and society officers.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   IEEE Transactions on Neural Networks information for authors   SCI SCIE


    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. C4 - C4 , 2016 , 2162-237x ,

    초록

    These instructions give guidelines for preparing papers for this publication. Presents information for authors publishing in this journal.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Table of contents   SCI SCIE


    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. C1 - 2457 , 2016 , 2162-237x ,

    초록

    Presents the table of contents for this issue of the publication.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS publication information   SCI SCIE


    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. C2 - C2 , 2016 , 2162-237x ,

    초록

    Provides a listing of the editorial board, current staff, committee members and society officers.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Training Radial Basis Function Neural Networks for Classification via Class-Specific Clustering   SCI SCIE

    Raitoharju, Jenni , Kiranyaz, Serkan , Gabbouj, Moncef
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2458 - 2471 , 2016 , 2162-237x ,

    초록

    In training radial basis function neural networks (RBFNNs), the locations of Gaussian neurons are commonly determined by clustering. Training inputs can be clustered on a fully unsupervised manner (input clustering), or some supervision can be introduced, for example, by concatenating the input vectors with weighted output vectors (input–output clustering). In this paper, we propose to apply clustering separately for each class (class-specific clustering). The idea has been used in some previous works, but without evaluating the benefits of the approach. We compare the class-specific, input, and input–output clustering approaches in terms of classification performance and computational efficiency when training RBFNNs. To accomplish this objective, we apply three different clustering algorithms and conduct experiments on 25 benchmark data sets. We show that the class-specific approach significantly reduces the overall complexity of the clustering, and our experimental results demonstrate that it can also lead to a significant gain in the classification performance, especially for the networks with a relatively few Gaussian neurons. Among other applied clustering algorithms, we combine, for the first time, a dynamic evolutionary optimization method, multidimensional particle swarm optimization, and the class-specific clustering to optimize the number of cluster centroids and their locations.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Similarity Constraints-Based Structured Output Regression Machine: An Approach to Image Super-Resolution   SCI SCIE

    Cheng Deng , Jie Xu , Kaibing Zhang , Dacheng Tao , Xinbo Gao , Xuelong Li
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2472 - 2485 , 2016 , 2162-237x ,

    초록

    For regression-based single-image super-resolution (SR) problem, the key is to establish a mapping relation between high-resolution (HR) and low-resolution (LR) image patches for obtaining a visually pleasing quality image. Most existing approaches typically solve it by dividing the model into several single-output regression problems, which obviously ignores the circumstance that a pixel within an HR patch affects other spatially adjacent pixels during the training process, and thus tends to generate serious ringing artifacts in resultant HR image as well as increase computational burden. To alleviate these problems, we propose to use structured output regression machine (SORM) to simultaneously model the inherent spatial relations between the HR and LR patches, which is propitious to preserve sharp edges. In addition, to further improve the quality of reconstructed HR images, a nonlocal (NL) self-similarity prior in natural images is introduced to formulate as a regularization term to further enhance the SORM-based SR results. To offer a computation-effective SORM method, we use a relative small nonsupport vector samples to establish the accurate regression model and an accelerating algorithm for NL self-similarity calculation. Extensive SR experiments on various images indicate that the proposed method can achieve more promising performance than the other state-of-the-art SR methods in terms of both visual quality and computational cost.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints   SCI SCIE

    Hosseini-Asl, Ehsan , Zurada, Jacek M. , Nasraoui, Olfa
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2486 - 2498 , 2016 , 2162-237x ,

    초록

    We demonstrate a new deep learning autoencoder network, trained by a nonnegativity constraint algorithm (nonnegativity-constrained autoencoder), that learns features that show part-based representation of data. The learning algorithm is based on constraining negative weights. The performance of the algorithm is assessed based on decomposing data into parts and its prediction performance is tested on three standard image data sets and one text data set. The results indicate that the nonnegativity constraint forces the autoencoder to learn features that amount to a part-based representation of data, while improving sparsity and reconstruction quality in comparison with the traditional sparse autoencoder and nonnegative matrix factorization. It is also shown that this newly acquired representation improves the prediction performance of a deep neural network.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   A Unified Framework for Representation-Based Subspace Clustering of Out-of-Sample and Large-Scale Data   SCI SCIE

    Peng, Xi , Tang, Huajin , Zhang, Lei , Yi, Zhang , Xiao, Shijie
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2499 - 2512 , 2016 , 2162-237x ,

    초록

    Under the framework of spectral clustering, the key of subspace clustering is building a similarity graph, which describes the neighborhood relations among data points. Some recent works build the graph using sparse, low-rank, and $\ell _{2}$ -norm-based representation, and have achieved the state-of-the-art performance. However, these methods have suffered from the following two limitations. First, the time complexities of these methods are at least proportional to the cube of the data size, which make those methods inefficient for solving the large-scale problems. Second, they cannot cope with the out-of-sample data that are not used to construct the similarity graph. To cluster each out-of-sample datum, the methods have to recalculate the similarity graph and the cluster membership of the whole data set. In this paper, we propose a unified framework that makes the representation-based subspace clustering algorithms feasible to cluster both the out-of-sample and the large-scale data. Under our framework, the large-scale problem is tackled by converting it as the out-of-sample problem in the manner of sampling, clustering, coding, and classifying. Furthermore, we give an estimation for the error bounds by treating each subspace as a point in a hyperspace. Extensive experimental results on various benchmark data sets show that our methods outperform several recently proposed scalable methods in clustering a large-scale data set.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   A Theoretical Foundation of Goal Representation Heuristic Dynamic Programming   SCI SCIE

    Zhong, Xiangnan , Ni, Zhen , He, Haibo
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2513 - 2525 , 2016 , 2162-237x ,

    초록

    Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applicable to industrial-scale complex control problems. In this paper, we develop the theoretical analysis for the GrHDP design under certain conditions. It has been shown that the internal reinforcement signal is a bounded signal and the performance index can converge to its optimal value monotonically. The existence of the admissible control is also proved. Although the GrHDP control method has been investigated in many areas before, to the best of our knowledge, this is the first study of presenting the theoretical foundation of the internal reinforcement signal and how such an internal reinforcement signal can provide effective information to improve the control performance. Numerous simulation studies are used to validate the theoretical analysis and also demonstrate the effectiveness of the GrHDP design.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Sequential Compact Code Learning for Unsupervised Image Hashing   SCI SCIE

    Liu, Li , Shao, Ling
    IEEE transactions on neural networks and learning systems v.27 no.12 ,pp. 2526 - 2536 , 2016 , 2162-237x ,

    초록

    Effective hashing for large-scale image databases is a popular research area, attracting much attention in computer vision and visual information retrieval. Several recent methods attempt to learn either graph embedding or semantic coding for fast and accurate applications. In this paper, a novel unsupervised framework, termed evolutionary compact embedding (ECE), is introduced to automatically learn the task-specific binary hash codes. It can be regarded as an optimization algorithm that combines the genetic programming (GP) and a boosting trick. In our architecture, each bit of ECE is iteratively computed using a weak binary classification function, which is generated through GP evolving by jointly minimizing its empirical risk with the AdaBoost strategy on a training set. We address this as greedy optimization by embedding high-dimensional data points into a similarity-preserved Hamming space with a low dimension. We systematically evaluate ECE on two data sets, SIFT 1M and GIST 1M, showing the effectiveness and the accuracy of our method for a large-scale similarity search.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지