본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Neuroscience 45건

  1. [해외논문]   Differential response to intrahippocampal interleukin-4/interleukin-13 in aged and exercise mice  

    Littlefield, A. ; Kohman, R.A.
    Neuroscience v.343 ,pp. 106 - 114 , 2017 , 0306-4522 ,

    초록

    Normal aging is associated with low-grade neuroinflammation that results from age-related priming of microglial cells. Further, aging alters the response to several anti-inflammatory factors, including interleukin (IL)-4 and IL-13. One intervention that has been shown to modulate microglia activation in the aged brain, both basally and following an immune challenge, is exercise. However, whether engaging in exercise can improve responsiveness to anti-inflammatory cytokines is presently unknown. The current study evaluated whether prior exercise training increases sensitivity to anti-inflammatory cytokines that promote the M2 (alternative) microglia phenotype in adult (5-month-old) and aged (23-month-old) C57BL/6J mice. After 8weeks of exercise or control housing, mice received bilateral hippocampal injections of an IL-4/IL-13 cocktail or vehicle. Twenty-four hours later hippocampal samples were collected and analyzed for expression of genes associated with the M1 (inflammatory) and M2 microglia phenotypes. Results show that IL-4/IL-13 administration increased expression of the M2-associated genes found in inflammatory zone 1 (Fizz1), chitinase-like 3 (Ym1), Arginase-1 (Arg1), SOCS1, IL-1ra, and CD206. In response to IL-4/IL-13 administration, aged mice showed increased hippocampal expression of the M2-related genes Arg1, SOCS1, Ym1, and CD206 relative to adult mice. Aged mice also showed increased expression of IL-1β relative to adults, which was unaffected by wheel running or IL-4/IL-13. Wheel running was found to have modest effects on expression of Ym1 and Fizz1 in aged and adult mice. Collectively, our findings indicate that aged mice show a differential response to anti-inflammatory cytokines relative to adult mice and that exercise has limited effects on modulating this response.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex  

    Ueno, H. ; Suemitsu, S. ; Okamoto, M. ; Matsumoto, Y. ; Ishihara, T.
    Neuroscience v.343 ,pp. 115 - 127 , 2017 , 0306-4522 ,

    초록

    The prefrontal cortex (PFC) plays a key role in cognitive functions, memory, and attention. Alterations in parvalbumin interneurons (PV neurons) and perineuronal nets (PNNs) within the PFC have been implicated in schizophrenia and autism spectrum disorder pathology. However, it remains unclear why PV neurons and PNNs in the PFC are selectively impaired. Here we aimed to clarify if PV neurons and PNNs in the PFC have region-specific features. We found that PV neurons and PNNs were increased in a region-specific manner in the PFC during postnatal development. In the mature PFC, the expression of PV protein is lower than in other parts of the cortex. Furthermore, PNNs in the mature PFC are not typical lattice-like structures and do not have the major components of PNNs and tenascin-R. The present study indicates that PV neurons and PNNs have region-specific features, and our results suggest that PV neurons and PNNs have structural vulnerability within the PFC.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Reaching to virtual targets: The oblique effect reloaded in 3-D  

    Kaspiris-Rousellis, C. ; Siettos, C.I. ; Evdokimidis, I. ; Smyrnis, N.
    Neuroscience v.343 ,pp. 128 - 139 , 2017 , 0306-4522 ,

    초록

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Effects of deep brain stimulation of the subthalamic nucleus on perceptual decision making  

    Zaehle, T. ; Wagenbreth, C. ; Voges, J. ; Heinze, H.J. ; Galazky, I.
    Neuroscience v.343 ,pp. 140 - 146 , 2017 , 0306-4522 ,

    초록

    When faced with difficult decisions, people prefer to stay with the default. This status quo bias often leads to suboptimal choice behavior. Neurophysiological evidence suggests a pivot role of the Subthalamic Nucleus (STN) for overcoming such status quo bias in difficult decisions, but causal evidence is lacking. The present study investigated whether subthalamic deep brain stimulation (DBS) in patients with Parkinson's disease (PD) influences the status quo bias. Eighteen PD patients treated with STN-DBS performed a difficult perceptual decision task incorporating intrinsic status quo option. Patients were tested with (ON) and without (OFF) active STN stimulation. Our results show that DBS of the STN affected perceptual decision making in PD patients depending on the difficulty of decision. STN-DBS improved difficult perceptual decisions due to a selective increase in accuracy (hit rate) that was independent of response bias (no effect on false alarm rate). Furthermore, STN-DBS impacted status quo bias as a function of baseline impulsivity. In impulsive patients, STN-DBS increased the default bias, whereas in less impulsive PD patients, DBS of the STN reduced the status quo bias. In line with our hypothesis, STN-DBS selectively affected the tendency to stick with the default option on difficult decisions, and promoted increased decision accuracy. Moreover, we demonstrate the impact of baseline cognitive abilities on DBS-related performance changes in PD patients.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   The Action Imitation network and motor imitation in children and adolescents with autism  

    Wadsworth, H.M. ; Maximo, J.O. ; Lemelman, A.R. ; Clayton, K. ; Sivaraman, S. ; Deshpande, H.D. ; Ver Hoef, L. ; Kana, R.K.
    Neuroscience v.343 ,pp. 147 - 156 , 2017 , 0306-4522 ,

    초록

    While deficits in imitation had been reported in children with autism spectrum disorder (ASD), its exact nature remains unclear. A dysfunction in mirroring mechanisms (through action imitation) has been proposed by some studies to explain this, although some recent evidence points against this hypothesis. The current study used behavior and functional MRI to examine the integrated functioning of the regions that are considered part of the Action Imitation network (AIN) in children and adolescents with ASD during a motor imitation task. Fourteen ASD and 15 age-and-IQ-matched typically developing (TD) children were asked to imitate a series of hand gestures in the MRI scanner. Intact performance on imitation (accurate imitation of hand gestures outside the scanner) in both ASD and TD groups was accompanied by significantly lower activity in ASD participants, relative to TD, in right angular gyrus, precentral gyrus, and left middle cingulate. In addition, autism traits were found to be significantly correlated with activation in the right angular gyrus. Overall, the findings of this study support the role of AIN in imitation and a potential difference in the recruitment of this network in ASD children.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Visual form predictions facilitate auditory processing at the N1  

    Paris, T. ; Kim, J. ; Davis, C.
    Neuroscience v.343 ,pp. 157 - 164 , 2017 , 0306-4522 ,

    초록

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   Binge alcohol alters exercise-driven neuroplasticity  

    Barton, E.A. ; Lu, Y. ; Megjhani, M. ; Maynard, M.E. ; Kulkarni, P.M. ; Roysam, B. ; Leasure, J.L.
    Neuroscience v.343 ,pp. 165 - 173 , 2017 , 0306-4522 ,

    초록

    Exercise is increasingly being used as a treatment for alcohol use disorders (AUD), but the interactive effects of alcohol and exercise on the brain remain largely unexplored. Alcohol damages the brain, in part by altering glial functioning. In contrast, exercise promotes glial health and plasticity. In the present study, we investigated whether binge alcohol would attenuate the effects of subsequent exercise on glia. We focused on the medial prefrontal cortex (mPFC), an alcohol-vulnerable region that also undergoes neuroplastic changes in response to exercise. Adult female Long-Evans rats were gavaged with ethanol (25% w/v) every 8h for 4days. Control animals received an isocaloric, non-alcohol diet. After 7days of abstinence, rats remained sedentary or exercised for 4weeks. Immunofluorescence was then used to label microglia, astrocytes, and neurons in serial tissue sections through the mPFC. Confocal microscope images were processed using FARSIGHT, a computational image analysis toolkit capable of automated analysis of cell number and morphology. We found that exercise increased the number of microglia in the mPFC in control animals. Binged animals that exercised, however, had significantly fewer microglia. Furthermore, computational arbor analytics revealed that the binged animals (regardless of exercise) had microglia with thicker, shorter arbors and significantly less branching, suggestive of partial activation. We found no changes in the number or morphology of mPFC astrocytes. We conclude that binge alcohol exerts a prolonged effect on morphology of mPFC microglia and limits the capacity of exercise to increase their numbers.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  8. [해외논문]   Heterogeneous spatial representation by different subpopulations of neurons in the subiculum  

    Brotons-Mas, J.R. ; Schaffelhofer, S. ; Guger, C. ; O'Mara, S.M. ; Sanchez-Vives, M.V.
    Neuroscience v.343 ,pp. 174 - 189 , 2017 , 0306-4522 ,

    초록

    The subiculum is a pivotal structure located in the hippocampal formation that receives inputs from grid and place cells and that mediates the output from the hippocampus to cortical and sub-cortical areas. Previous studies have demonstrated the existence of boundary vector cells (BVC) in the subiculum, as well as exceptional stability during recordings conducted in the dark, suggesting that the subiculum is involved in the coding of allocentric cues and also in path integration. In order to better understand the role of the subiculum in spatial processing and the coding of external cues, we recorded subicular units in freely moving rats while performing two experiments: the ''size experiment'' in which we modified the arena size, and the ''barrier experiment'' in which we inserted new barriers in a familiar open field thus dividing the enclosure into four comparable sub-chambers. We hypothesized that if physical boundaries were deterministic of the firing of subicular units a strong spatial replication pattern would be found in most spatially modulated units. In contrast, our results demonstrate heterogeneous space coding by different cell types: place cells, barrier-related units and BVC. We also found units characterized by narrow spike waveforms, most likely belonging to axonal recordings, that showed grid-like patterns. Our data indicate that the subiculum codes space in a flexible manner, and that it is involved in the processing of allocentric information, external cues and path integration, thus broadly supporting spatial navigation.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  9. [해외논문]   Neuron-specific SUMO knockdown suppresses global gene expression response and worsens functional outcome after transient forebrain ischemia in mice  

    Zhang, L. ; Liu, X. ; Sheng, H. ; Liu, S. ; Li, Y. ; Zhao, J.Q. ; Warner, D.S. ; Paschen, W. ; Yang, W.
    Neuroscience v.343 ,pp. 190 - 212 , 2017 , 0306-4522 ,

    초록

    Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) plays key roles in neurologic function in health and disease. Neuronal SUMOylation is essential for emotionality and cognition, and this pathway is dramatically activated in post-ischemic neurons, a neuroprotective response to ischemia. It is also known from cell culture studies that SUMOylation modulates gene expression. However, it remains unknown how SUMOylation regulates neuronal gene expression in vivo, in the physiologic state and after ischemia, and modulates post-ischemic recovery of neurologic function. To address these important questions, we used a SUMO1-3 knockdown (SUMO-KD) mouse in which a Thy-1 promoter drives expression of 3 distinct microRNAs against SUMO1-3 to silence SUMO expression specifically in neurons. Wild-type and SUMO-KD mice were subjected to transient forebrain ischemia. Microarray analysis was performed in hippocampal CA1 samples, and neurologic function was evaluated. SUMOylation had opposite effects on neuronal gene expression before and after ischemia. In the physiological state, most genes regulated by SUMOylation were up-regulated in SUMO-KD compared to wild-type mice. Brain ischemia/reperfusion significantly modulated the expression levels of more than 400 genes in wild-type mice, with a majority of those genes upregulated. The extent of this post-ischemic transcriptome change was suppressed in SUMO-KD mice. Moreover, SUMO-KD mice exhibited significantly worse functional outcome. This suggests that suppression of global gene expression response in post-ischemic brain due to SUMO knockdown has a negative effect on post-ischemic neurologic function. Together, our data provide a basis for future studies to mechanistically link SUMOylation to neurologic function in health and disease.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  10. [해외논문]   Interaction between novel oscillation within the ventromedial hypothalamus and the sympathetic nervous system  

    Iigaya, K. ; Okazaki, S. ; Minoura, Y. ; Onimaru, H.
    Neuroscience v.343 ,pp. 213 - 221 , 2017 , 0306-4522 ,

    초록

    The ventromedial hypothalamus (VMH) is known to play an important role in feeding behavior and the control of sympathetic nerve activity (SNA). We report the identification of novel neuron groups that showed oscillations on both sides of the VMH in hypothalamus slice preparations from juvenile rats of postnatal days 5-14. We detected spontaneous rhythmic burst activity with a frequency of around 0.06Hz typically in the dorsolateral region of the VMH (i.e., VMH oscillation) using optical recordings (voltage and calcium imaging), field potential recordings and intracellular membrane potential recordings. The oscillation was also confirmed after isolation of the VMH from other hypothalamic structures. The frequency of oscillation was increased by lowering the glucose concentration of the superfusate. To evaluate the relation between VMH oscillation and SNA, we simultaneously recorded VMH oscillation, SNA from the thoracic sympathetic nerve trunk and phrenic nerve discharge (Phr) in the decerebrate and arterially perfused in situ preparation from juvenile rats of postnatal days 5-11. Power spectral analysis in the arterially perfused in situ rat preparation revealed similar peak values to those of slice preparations within the low-frequency range between the VMH oscillation and sympathetic nerve trunk activity. In addition, we analyzed cross-correlations between the VMH, SNA and Phr. The results revealed that a predominant positive correlation of the VMH activity with the SNA existed with an average time lag of 2.4s, suggesting the presence of functional couplings between the VMH and SNA (and respiratory center) in the lower brainstem and spinal cord. We hypothesize that the VMH oscillation might be involved in low-frequency modulation of the SNA.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지