본문 바로가기
HOME> 저널/프로시딩 > 저널/프로시딩 검색상세

저널/프로시딩 상세정보

권호별목차 / 소장처보기

H : 소장처정보

T : 목차정보

Restoration ecology : the journal of the Society f... 27건

  1. [해외논문]   Flower visitor communities are similar on remnant and reconstructed tallgrass prairies despite forb community differences   SCIE

    Denning, Kathy R. (Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, U.S.A.) , Foster, Bryan L. (Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, U.S.A.)
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 751 - 759 , 2018 , 1061-2971 ,

    초록

    One common goal of habitat restoration and reconstruction is to reinstate the biodiversity found at intact reference sites. However, few researchers have examined whether these practices reinstate communities of flower‐visiting insects. This is unfortunate, as anthropogenically mediated declines in flower visitors, including bees (the primary pollinators for most terrestrial ecosystems), beetles, flies, and butterflies, have been reported worldwide. Biodiversity declines may be especially severe in North America's tallgrass prairie, a once‐vast grassland that has experienced severe destruction and degradation due to agricultural conversion. As such, we assessed the structure of forb and flower‐visiting insect communities as a whole and two subsets of the flower visitor community—bees and phytophagous beetles—across five tallgrass prairie remnants and five reconstructed prairies (former crop fields) in Kansas from 2013 to 2015. Remnant prairies had significantly higher forb diversity and differed significantly in forb composition, compared to reconstructed prairies. Despite the dissimilarities in forb community structure, there were no differences in flower visitor diversity or abundance between remnants and reconstructed prairies. However, when considered separately, bee communities exhibited significantly greater variability in composition on reconstructed prairies, likely due to the abundance of generalist bee species visiting non‐native legumes at two reconstructed prairies. Our work provides evidence that prairie habitat reconstruction is a valuable tool for reestablishing flower‐visiting insect communities and also emphasizes the considerable role that non‐native species may play in structuring grassland plant–bee interactions.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  2. [해외논문]   Differences among avian frugivores in seed dispersal to degraded habitats   SCIE

    Rehm, Evan M. (Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, U.S.A.) , Chojnacki, Janelle (Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, U.S.A.) , Rogers, Haldre S. (Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, U.S.A.) , Savidge, Julie A. (Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, U.S.A.)
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 760 - 766 , 2018 , 1061-2971 ,

    초록

    Vertebrate frugivores enhance tropical forest regeneration by dispersing seeds into degraded areas. However, the importance of individual species as dispersers may vary within a community. Management and restoration would benefit from understanding which species are critical in moving native seeds into degraded habitats. We compared habitat composition of bird start and end locations for movement intervals based on mean gut passage times for the avian frugivore community on the island of Saipan. The proportion of movement intervals that began in intact, native forest varied among species, with Golden White‐eyes having the highest proportion. However, this species tended to remain in intact forest and only rarely crossed into degraded habitats. Bridled White‐eyes and Mariana Fruit Doves exhibited slightly higher rates of crossing from intact forest to degraded habitats, suggesting an ability to disperse native seeds to degraded areas. White‐throated Ground Doves were never recorded crossing from intact forest to degraded habitats. Despite having a low proportion of movement intervals beginning in intact forest, Micronesian Starlings showed a higher proportion and absolute number of movements from intact forest to degraded habitats, due to their propensity to move frequently, across long distances, and across habitat types. In this species‐poor frugivore network, seed dispersal into degraded habitats appears highly dependent on one species within the community. Regeneration of degraded lands may be severely hindered if this key disperser is lost.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  3. [해외논문]   Habitat selection of riparian birds at restoration sites along the Trinity River, California   SCIE

    Rockwell, Sarah M. (Klamath Bird Observatory, PO Box 758, Ashland, OR 97520, U.S.A.) , Stephens, Jaime L. (Klamath Bird Observatory, PO Box 758, Ashland, OR 97520, U.S.A.)
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 767 - 777 , 2018 , 1061-2971 ,

    초록

    Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  4. [해외논문]   Recovery of mammal diversity in tropical forests: a functional approach to measuring restoration   SCIE

    Derhé (Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, U.K.) , , Mia A. (Tropical Forest Research Centre, CSIRO, PO Box 780, Atherton, Queensland, 4883, Australia) , Murphy, Helen T. (Centre for Tropical Environmental and Sustainability Science, College of Marine & Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia) , Preece, Noel D. (Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, 0909, Australia) , Lawes, Michael J. (Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, U.K.) , Mené , ndez, Rosa
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 778 - 786 , 2018 , 1061-2971 ,

    초록

    Abstract Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  5. [해외논문]   Small mammal abundance and seed predation across boundaries in a restored‐grazed woodland interface   SCIE

    Tabeni, Solana (Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA), CCT‐CONICET Mendoza, UNCuyo, Gobierno de Mendoza, Av. A. Ruiz Leal s/n. Parque General San Martín, CC 507, CP 5500, Mendoza, Argentina) , Miguel, M. Florencia (Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA), CCT‐CONICET Mendoza, UNCuyo, Gobierno de Mendoza, Av. A. Ruiz Leal s/n. Parque General San Martín, CC 507, CP 5500, Mendoza, Argentina) , Campos, Claudia M. (Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA), CCT‐CONICET Mendoza, UNCuyo, Gobierno de Mendoza, Av. A. Ruiz Leal s/n. Parque General San Martín, CC 507, CP 5500, Mendoza, Argentina) , Cona, Mó (Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA), CCT‐CONICET Mendoza, UNCuyo, Gobierno de Mendoza, Av. A. Ruiz Leal s/n. Parque General San Martín, CC 507, CP 5500, Mendoza, Argentina) , nica
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 787 - 795 , 2018 , 1061-2971 ,

    초록

    Passive restoration is an effective tool for the maintenance and conservation of biodiversity. Often areas in recovery are immersed in a matrix of land uses, in which the expansion and intensification of human activities exert new visible pressures at their boundaries. The degree of connectivity between these areas and their peripheral lands can be analyzed by mobile link species, organisms that actively move in the landscape by connecting areas to one another through their functional roles. We focus our design on the interface generated by the long‐term restoration area and surrounding grazing lands. We analyze the changes on boundary structure, small mammal abundance, and on the function of native seed dispersal by these vertebrate species. We captured small mammals and determined seed removal of Prosopis flexuosa at three distances inside and outside a fence that delineates passively restored and currently grazed areas. Our results indicate that small rodents find more suitable habitats at the site under restoration than in grazing lands. The restored‐grazing interface shows a decrease in small mammal abundance from the protected area to the grazed lands. From a functional perspective, an increase in small mammal abundance results in an increase in their seed removal activity with implications for seed fate, because the long‐term recovery of vegetation could enhance seed predation on a native tree species.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  6. [해외논문]   Beyond restoration ecology: social perspectives in Latin America and the Caribbean   SCIE

    Baldauf, Cristina (Department of Biosciences, Federal Rural University of the Semiarid Region, Mossoró, Brazil)
    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 796 - 797 , 2018 , 1061-2971 ,

    초록

    Passive restoration is an effective tool for the maintenance and conservation of biodiversity. Often areas in recovery are immersed in a matrix of land uses, in which the expansion and intensification of human activities exert new visible pressures at their boundaries. The degree of connectivity between these areas and their peripheral lands can be analyzed by mobile link species, organisms that actively move in the landscape by connecting areas to one another through their functional roles. We focus our design on the interface generated by the long‐term restoration area and surrounding grazing lands. We analyze the changes on boundary structure, small mammal abundance, and on the function of native seed dispersal by these vertebrate species. We captured small mammals and determined seed removal of Prosopis flexuosa at three distances inside and outside a fence that delineates passively restored and currently grazed areas. Our results indicate that small rodents find more suitable habitats at the site under restoration than in grazing lands. The restored‐grazing interface shows a decrease in small mammal abundance from the protected area to the grazed lands. From a functional perspective, an increase in small mammal abundance results in an increase in their seed removal activity with implications for seed fate, because the long‐term recovery of vegetation could enhance seed predation on a native tree species.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지
  7. [해외논문]   The SER Standards: a globally relevant and inclusive tool for improving restoration practice—a reply to Higgs et al.   SCIE


    Restoration ecology : the journal of the Society for Ecological Restoration v.26 no.4 ,pp. 798 - 798 , 2018 , 1061-2971 ,

    초록

    Passive restoration is an effective tool for the maintenance and conservation of biodiversity. Often areas in recovery are immersed in a matrix of land uses, in which the expansion and intensification of human activities exert new visible pressures at their boundaries. The degree of connectivity between these areas and their peripheral lands can be analyzed by mobile link species, organisms that actively move in the landscape by connecting areas to one another through their functional roles. We focus our design on the interface generated by the long‐term restoration area and surrounding grazing lands. We analyze the changes on boundary structure, small mammal abundance, and on the function of native seed dispersal by these vertebrate species. We captured small mammals and determined seed removal of Prosopis flexuosa at three distances inside and outside a fence that delineates passively restored and currently grazed areas. Our results indicate that small rodents find more suitable habitats at the site under restoration than in grazing lands. The restored‐grazing interface shows a decrease in small mammal abundance from the protected area to the grazed lands. From a functional perspective, an increase in small mammal abundance results in an increase in their seed removal activity with implications for seed fate, because the long‐term recovery of vegetation could enhance seed predation on a native tree species.

    원문보기

    원문보기
    무료다운로드 유료다운로드

    회원님의 원문열람 권한에 따라 열람이 불가능 할 수 있으며 권한이 없는 경우 해당 사이트의 정책에 따라 회원가입 및 유료구매가 필요할 수 있습니다.이동하는 사이트에서의 모든 정보이용은 NDSL과 무관합니다.

    NDSL에서는 해당 원문을 복사서비스하고 있습니다. 아래의 원문복사신청 또는 장바구니담기를 통하여 원문복사서비스 이용이 가능합니다.

    이미지

    Fig. 1 이미지

논문관련 이미지