본문 바로가기
HOME> 보고서 > 보고서 검색상세

보고서 상세정보

극저조도 영상 나노 소자를 활용한 방사선 계측모듈 상용화
Commercialization of radiation detection module using extreme low light imaging solution

  • 주관연구기관

    한국과학기술원
    Korea Advanced Institute of Science and Technology

  • 연구책임자

    조규성

  • 참여연구자

    설우석  

  • 보고서유형

    연차보고서

  • 발행국가

    대한민국

  • 언어

    한국어

  • 발행년월

    2016-01

  • 주관부처

    미래창조과학부
    KA

  • 사업 관리 기관

    한국나노기술원

  • 등록번호

    TRKO201600000767

  • 키워드

    극저조도 영상계측,가이거모드,애벌런치광다이오드,단일광자측정,잡음계수율,광효율,통합모듈,적측형 패키지,양산공정Extremely low light imaging,Geiger-mode,Avalanche Photodide,Single Photon Spectrum,Dark Count Rate,Photon Detection Efficiency,Whole Module,stack packaging,High-yield Fabrication

  • DB 구축일자

    2016-04-23

  • 초록 


    ■ Purpose
    The aim of this project is to develope and commercialize an extreme low light imaging solution (ELLIS) that is appli...

    ■ Purpose
    The aim of this project is to develope and commercialize an extreme low light imaging solution (ELLIS) that is applicable in industries. To achieve such goal, the proposed imaging sensor needs to be capable of acquiring a single photon spectrum, having an internal gain of 106 and the maximum PDE of 20% or more. In addition, it should have the maximum DCR of 8MHz/ch and a time resolution of 1ns. Furthermore, a high-yield fabrication technique and a signal-processing read-out circuit production technique will be modeled in order to commercialize the proposed product

    ■ Contents
    The proposed research is largely divided into two main parts. The first stage is mainly devoted to developing and optimizing extreme low light imaging sensors and the second stage is focused in modifying the developed modules so that they can be produced in a mass-production. Aforementioned, the first stage is focused on improving a single Geiger-mode Avalanche Photodiode (GAPD) to maximize its performance. To become a low noise device, a well structure and a guard-ring design will be optimized. In addition, A development of specific fabrication technique such as Gettering and isolation between devices will be applied in order to fully quantify the results and analyze noise characteristics. Furthermore, new device structures such as buried well, backside illumination, and nano-particle surface plasmonic will be established and an optimized Epi layer with an anti-reflection coating will be applied to evaluate and analyze quantitatively. The proposed GAPD is expected to have a minimum internal gain of 106, a breakdown voltage of 26V, a PDE equal to or larger than 20%, a maximum DCR of 8MHz/ch, and a time resolution less than or equal to 1ns.
    The second stage will be based on the result of the first stage. It aims to produce a high performing array type GAPD, combined with a low noise Front-end circuit and signal-processing circuit to create an extremely low light detection module with a single photon detection capability. The production of array type GAPD will be done via mass-production fabrication to have a yield of 90% or more. In addtion, a low noise Front-end circuit will be designed such that it would have a gain of 100, a bandwidth of 12MHz, and a feedback capacitance of 100pF. Lastly, the signal-processing unit is planned to be composed of a 12-bit Analog-to-Digital Converter(ADC) with an operating frequency of 100MHz and a Time-to-Digital Converter(TDC) with a 10ns resolution. The final product will be the combination of a 16-channel GAPD array with a low noise Front-end and signal-processing circuit via lamination packaging to become a whole module.

    ■ Expected Contribution
    The proposed device ELLIS will have a competitive economical value with a high performance so that they can replace the currently commonly-used vacuum photomultiplier tubes in a various industries. Moreover, ELLIS can be applied in a field of medical imaging such as Positron Emission Tomography(PET), Single Photon Emission Computed Tomography(SPECT), and Gamma Camera, military-related areas such as night-vision goggles, radiation detection, radioactive-material detection, and Light Detection and Ranging(LiDAR), a field of biophotonics such as flow cytometry, and fluoresce spectroscopy and a field of astronomy such as space-material detection.


    ...


  • 목차(Contents) 

    1. 표지 ... 1
    2. 목차 ... 2
    3. 국가연구개발사업 연차실적·계획서(협약용) ... 3
    4. 한글요약문 ... 4
    5. SUMMARY ... 5
    6. 연구분야 ... 6
    7. Ⅰ. 실적 (1차년도) ... 7
    8. 1. 연구개발 목표 및 평가의 착안점 ... 7...
    1. 표지 ... 1
    2. 목차 ... 2
    3. 국가연구개발사업 연차실적·계획서(협약용) ... 3
    4. 한글요약문 ... 4
    5. SUMMARY ... 5
    6. 연구분야 ... 6
    7. Ⅰ. 실적 (1차년도) ... 7
    8. 1. 연구개발 목표 및 평가의 착안점 ... 7
    9. 2. 연구범위 및 연구수행 방법 ... 9
    10. 3. 연구수행 내용 및 결과 ... 10
    11. 3-1. 총괄연구개발과제 ... 10
    12. 3-2. 제1세부과제 ... 17
    13. 3-3. 제2세부과제 ... 22
    14. 4. 연구개발목표의 달성도 및 자체평가 ... 25
    15. 5. 연구성과 ... 28
    16. 6. 연구비 집행실적 ... 30
    17. 7. 연구수행에 따른 문제점 및 개선방향 ... 31
    18. 8. 중요 연구변경 사항 ... 31
    19. 9. 기타 건의사항 ... 31
    20. 10. 자체평가의견서 (총괄) ... 32
    21. 11. 연구비 사용실적 확인서 ... 35
    22. Ⅱ. 계획 (2차년도) ... 36
    23. Ⅱ-1. 총괄과제(극저조도 영상 나노 소자를 활용한 방사선 계측모듈 상용화) ... 36
    24. II-2. 세부과제 ... 70
    25. II-2-1. (세부과제 1) 극저조도 영상계측 나노소자 설계 및 모듈 제작기술 개발 ... 70
    26. II-2-2. (세부과제 2) 극저조도 영상계측 나노소자 공정기술 개발 ... 102
    27. 끝페이지 ... 127
  • 참고문헌

    1. 전체(0)
    2. 논문(0)
    3. 특허(0)
    4. 보고서(0)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역