본문 바로가기
HOME> 보고서 > 보고서 검색상세

보고서 상세정보

나노 메탈러지 기반 생체 촉매 모방형 무기물 촉매 소재군 개발
Nano-Metallurgy based development of biomimetic inorganic catalyst materials

  • 과제명

    나노 메탈러지 기반 생체 촉매 모방형 무기물 촉매 소재군 개발

  • 주관연구기관

    서울대학교
    Seoul National University

  • 연구책임자

    주영창

  • 참여연구자

    남기태   한승우   강기석   김형준   이현주   윤명한   하헌필   이인행   이원재   그외 다수  

  • 보고서유형

    1단계보고서

  • 발행국가

    대한민국

  • 언어

    한국어

  • 발행년월

    2015-10

  • 과제시작년도

    2015

  • 주관부처

    미래창조과학부
    KA

  • 사업 관리 기관

    한국연구재단

  • 등록번호

    TRKO201600001225

  • 과제고유번호

    1711027179

  • 키워드

    생체모방.나노 메탈러지.예측합성.촉매.다중 산화수.멀티머.계산과학.준안정상.고선택성.Biomimetic.Nano-Metallurgy.Predicted synthesis.Catalyst.Multivalence.Multimer.Computation.Metastable phase.High selectivity

  • DB 구축일자

    2016-05-14

  • 초록 


    Ⅳ. Results of planning research
    ■The developed catalytic materials are applied to the following applications in the order of l...

    Ⅳ. Results of planning research
    ■The developed catalytic materials are applied to the following applications in the order of listed: denitrification catalyst, peroxide production, hydrogen production through water split, carbon dioxide reduction. The order depends on their markets.
    ■During the research project, we divided the topic in detail for a systematic research plan. This project is composed of three topics: 'Nano-metallurgy based process of inorganic catalyst materials', 'De NOx SCR design for ultra low temperature application', 'Biomimetic multimer based catalyst.'
    ■In this project, we wrote up portfolio to analyze the market and to write patents.We carried on detailed analysis on the three sub topics: heterogeneous interface multimer inorganic catalyst, scientific simulations and calculations for property prediction, and catalyst synthesis.
    ■The two research area, denitrification catalyst and peroxide production are considered to be valuable in patent. The other two areas, hydrogen production through water split and carbondioxide reduction have relatively small market in industry.
    ■Biomimetic catalyst: We successfully synthesized metal oxide nanoparticels with 1-2 nm heterogeneous metal dusters doped, which performed outstanding efficiency for hydrogen production through water split. Also, we treated the surface with organic/inorganic functional groups to perform multimers in inorganic catalyst, being the first in the world record.
    ■Monomer catalyst synthesis through supporting material control: We controlled Pt loading on Au nanoparticles to synthesis multimers. We confirmed through the reaction in formic acid that Pt performs the highest activity when Pt exists in monomeric form.
    ■Low-temperature and stable denitriding catalyst: We modify catalyst surface to improve the property for acid site and reduction, which tremendously increased the stability of the catalysts. We recorded the best in the world with the catalyst developed during the five months of the preceding research.
    ■Optimization of catalytic activity through the scientific calculations: We showed dozen times increased property of Ag nanoparticles when introduced by cysteamine organic couplers. This can be theoretically explained that cysteamine breaks the symmetry of Ag nanoparticles to make holes localized on the catalyst surface.
    ■We predicted through DFT calculation that Pt atoms exist in thermodynamically stable state m N vacancy on TiN. And we were successful in practically synthesizing Pt atoms on TiN supporting materials. This is a good example of increasing the efficiency of catalyst by simulating and predicting the morphology of synthesized catalyst.
    ■Phase and morphology control of nanomaterials through nano-metallurgy: We derived selective oxidation reaction through ambient pressure control based on Elingham diagram. In particular, materials in a heterogeneous structure can each be either oxidized or reduced to control their phases and mechanisms in structure control.
    ■Simulating phase equilibrium in nano scale: We combined multi-scale simulation method with dielectric algorithm to develop the simulation platform for phase equilibrium in nano-scale. We showed complicated examples of phase equilibrium and predicted Elingham diagram of Cu 13 nanoparticles.
    ■Reaction pathway and prediction of reaction products: Through DFT calculations,we obtained the required activation energy when Li2O2 production and Li2CO3 production compete in reaction. This research team could therefore deduce the electrolyte condition to carry on the chemical reaction to selectively produce either one of the two productions, Li2O2 and Li2CO3.
    ■High-throughput oxide synthesis: In order for the fast practical screening of catalyst, we took solution-processed oxide coating. Also, we developed a solution-based patterning method for oxide thin film for a fast screening of various active catalysts. Moreover, we provided a mimetic diagram for oxide insulator library in various conditions and variables.


    ...


  • 목차(Contents) 

    1. 표지 ... 1
    2. 제출문 ... 2
    3. 보고서 요약서 ... 3
    4. 요약문 ... 4
    5. SUMMARY(영문요약문) ... 9
    6. CONTENTS ... 14
    7. 목차 ... 15
    8. 제1장 先기획연구 개요 ... 16
    9. 1.先기획연구의 목적 필요성 및 범위 ... ...
    1. 표지 ... 1
    2. 제출문 ... 2
    3. 보고서 요약서 ... 3
    4. 요약문 ... 4
    5. SUMMARY(영문요약문) ... 9
    6. CONTENTS ... 14
    7. 목차 ... 15
    8. 제1장 先기획연구 개요 ... 16
    9. 1.先기획연구의 목적 필요성 및 범위 ... 16
    10. 2.대상 소재기술의 정의 및 개념 ... 25
    11. 제2장 기술개발 현황 및 조사·분석 ... 32
    12. 1.국내·외 기술개발 현황 ... 32
    13. 2.선행 연구조사· 분석 및 시사점 ... 39
    14. 제3장 기술개발 목표 및 내용 ... 85
    15. 1.원천특허 포트폴리오 ... 85
    16. 2.연구개발내용 및 범위 ... 91
    17. 3.기존 기술과의 차별성 및 원천성 ... 103
    18. 4.국가 소재R&D 전략과의 연계성 및 부합성 ... 106
    19. 5.先연구내용 및 결과 ... 109
    20. 제4장 先기획연구 활동 추진 내용 ... 123
    21. 1.先기획연구 추진 체계 ... 123
    22. 2.先기획연구 방법론 ... 124
    23. 3.先기획연구 활동 내용 ... 134
    24. 제5장 기대성과 및 활용 계획 ... 148
    25. 1.기대성과 ... 148
    26. 2.상용화 예상 분야 ... 149
    27. 3.경제성 분석 ... 150
    28. 제6장 참고문헌 ... 152
    29. 끝페이지 ... 159
  • 참고문헌

    1. 전체(0)
    2. 논문(0)
    3. 특허(0)
    4. 보고서(0)

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역